直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI应用在测试领域的案例

回答

以下是 AI 应用在测试领域的一些案例:

基于模型的测试生成:

  • 状态模型:
    • GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。
    • Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。
  • 场景模拟:
    • Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。
    • Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。

实践中的应用示例:

  • Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。
  • 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。
  • 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。

工具和平台:

  • Testim:AI 驱动的自动化测试平台,生成和管理测试用例。
  • Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。
  • DeepTest:利用深度学习生成自动驾驶系统测试用例。
  • GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。
  • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。

基于规则的测试生成:

  • 测试用例生成工具:
    • Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。
    • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。
  • 模式识别:
    • Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。
    • Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。

基于机器学习的测试生成:

  • 深度学习模型:
    • DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。
    • DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。
  • 强化学习:
    • RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。
    • A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。

基于自然语言处理(NLP)的测试生成:

  • 文档驱动测试生成:
    • Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。
    • Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。
  • 自动化测试脚本生成:
    • Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。
    • Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AI 做测试用例

GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。[heading4]b.场景模拟[content]Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。[heading3]5.实践中的应用示例[content]1.Web应用测试:使用**Testim**分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。2.移动应用测试:利用**Test.ai**从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。3.复杂系统测试:采用**GraphWalker**基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。[heading3]工具和平台[content]Testim:AI驱动的自动化测试平台,生成和管理测试用例。Test.ai:基于NLP技术的测试用例生成工具,适用于移动应用和Web应用。DeepTest:利用深度学习生成自动驾驶系统测试用例。GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。

问:AI 做测试用例

AI生成测试用例是一项非常有价值的功能,可以显著提高测试覆盖率、减少人工编写测试用例的时间和成本。以下是一些具体方法和工具,展示AI如何生成测试用例:[heading3]1.基于规则的测试生成[heading4]a.测试用例生成工具[content]Randoop:基于代码路径和规则生成测试用例,适用于Java应用程序。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET应用。[heading4]b.模式识别[content]Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。[heading3]2.基于机器学习的测试生成[heading4]a.深度学习模型[content]DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。[heading4]b.强化学习[content]RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。[heading3]3.基于自然语言处理(NLP)的测试生成[heading4]a.文档驱动测试生成[content]Testim:AI驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。Test.ai:利用NLP技术从需求文档中提取测试用例,确保测试覆盖业务需求。[heading4]b.自动化测试脚本生成[content]Selenium IDE+NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

问:AI 做测试用例

AI在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用AI工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。内容由AI大模型生成,请仔细甄别

其他人在问
ai编剧软件
以下是关于 AI 编剧软件及相关内容的介绍: 故事来源与剧本写作: 故事来源有两种路径。路径一是原创,包括自身或周围人的经历、做过的梦、想象的故事等;路径二是改编,如经典 IP、名著、新闻、二创等。 编剧看似门槛低实则有一定难度,剧作理论和模板可能导致故事死板。写剧本的第一步永远是写,然后实践、看书、完善实践、总结经验,循环往复。短片创作可从自身或朋友经历改编入手,或对触动自己的短篇故事进行改编。多与他人讨论故事,有助于修改和进步,不必担心创意被窃取(商业合作除外)。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要调整,如重新编辑某些场景或调整音频。 9. 输出与分享:完成编辑后,输出最终视频,并在所需平台分享。 AI 制作短片和电影的综合应用: 包括使用 ChatGPT 撰写脚本、分镜、人物设定、旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 请注意,具体操作步骤和所需工具可能因项目需求和个人偏好不同而有所差异,AI 工具的可用性和功能也可能随时间变化,建议直接访问工具网址获取最新信息和使用指南。且内容由 AI 大模型生成,请仔细甄别。
2024-12-20
在国内可以免费用的图生视频的ai工具
以下是在国内可以免费用的图生视频的 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps,文生视频,支持中文,时空理解。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频,视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以,文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持 16:9、9:16、1:1、3:4、4:3 尺寸,图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文,文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸,图生视频除了不可运镜控制以外,其他跟文生视频基本相同,默认生成 5s 的视频。 此外,还有一些国内外提供文生视频功能的产品推荐: 1. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-20
如何系统学习AI知识
以下是系统学习 AI 知识的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-12-20
图生视频的ai工具
以下是一些图生视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 根据视频脚本生成短视频的 AI 工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频所需要素并生成对应素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 3. Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化的视频内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 关于清影的图生视频: 输入一张图片加相应提示词,清影大模型会根据提示将图片转变为视频画面。也可以只输入一张图片,清影大模型将自行发挥想象力把图片扩展为有故事的视频。有两个小技巧: 1. 选用尽可能清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。若原图不够清晰,可采用分辨率提升工具。 2. 提示词要简单清晰。可以选择不写 prompt,直接让模型操控图片动起来;或者明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词(一定要有主体,不然可能会出现 AI 狂乱景象)。若不明确大模型如何理解图片,推荐将照片发送到清言对话框进行识图,明确主体的描述。
2024-12-20
让照片变清晰的AI
以下是关于让照片变清晰的 AI 相关内容: 可以将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。具体可参考文章。但此步骤无法将照片中的头发、衣服等元素变清晰。 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免干扰原图。 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,能在显存不够的情况下将图片放大到足够倍数。 常见的 AI 画质增强工具有 Magnific(https://magnific.ai/)、ClipDrop(https://clipdrop.co/imageupscaler)、Image Upscaler(https://imageupscaler.com/)、Krea(https://www.krea.ai/)等。更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。这些工具具有不同特点和功能,可根据具体需求选择。
2024-12-20
公文写作ai
以下是关于公文写作 AI 的相关信息: 在论文写作领域,AI 技术应用广泛,提供了多方面的辅助,常用的工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 中文的内容仿写 AI 工具推荐: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,心得体会、公文写作等都能应对,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的智能创作助手,提升写作效率和创作体验。 利用 AI 不到 30 分钟打造爆款公众号文章: AI 生产文章关键在于提供清晰且具指导性的提示词(prompt)。好的提示词能让 AI 更准确理解需求并生成符合预期的内容。若想提升质量,可提供更详细、具创意的提示词,设定文章语气、风格和重点。例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”最终产出的内容可能需微调以符合预期和公众号风格。
2024-12-20
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
智能客服的实践案例有哪些?
以下是一些智能客服的实践案例: 在销售方面,有“销售:话术总结优缺点”,涉及产品特点、服务优势、目标客户需求和痛点等方面。 详情: 入库时间:2023/10/30 在销售方面,还有“销售:定制销售解决方案”,涵盖企业产品和服务内容、客户需求和参数等内容。 详情: 入库时间:2023/10/30 在客服方面,有“客服:定制客服话术”,包含产品知识、使用方法等 13 个关键词库。 详情: 入库时间:2023/10/30 腾讯运营在智能客服方面的应用: ChatGPT 承担客服功能,通过告知其具体客服身份,要求其解答用户问题并进行私域流量转化。 ChatGPT 能够理解社区用户的评论和问题,并生成合适的回复,管理社区互动,模拟运营人的语言风格,与用户进行更自然的互动。 ChatGPT 可以监测舆情和热点,从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析。 其他相关案例:
2024-12-17
RAG 案例
以下是为您提供的关于 RAG 案例的相关内容: 在商业化问答场景中,存在大模型根据知识库回复不准确的情况,如回答牛头不对马嘴、未依据正确内容回答等错误场景,这凸显了优化大模型根据知识库回答准确性的重要性,而在 AI 领域中,此优化过程称为 RAG。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。 在案例研究中: 案例 B 中,用户查询特定研究论文中的“表格 8”及所列因变量,ChatDOC 能有效检索整个表格,包括标题和内容,准确响应查询,而 Baseline 模型未检索到真正的“表格 8”。 OpenAI 在提升 RAG 准确率方面,从 45%开始,尝试多种方法,如假设性文档嵌入和精调嵌入等效果不理想,通过调整信息块大小、嵌入不同内容部分、Reranking、对不同类别问题特别处理、提示工程、查询扩展等方法,最终达到 98%的准确率,强调了模型精调和 RAG 结合使用的潜力。
2024-12-12
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
请给我一些优秀的、好用的智能体的“提示词”案例,我想用于学习如何撰写精良的提示词,以及更加深入的使用AI工具
以下是一些优秀的智能体提示词案例和相关学习建议: 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述;根据 Logo 图片的描述和生成意图生成图片提示词;将图片和提示词输入 Comfyui 工作生成。 提示词示例:“The pair of images highlights a logo and its realworld use for a hitech farming equipment; this logo is applied as a black and white tattoo on lower back of an inmate” 学习提示词运用的建议: 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中寻找。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。 活用提示工程工具:如 Anthropic 的 Constitutional AI。 跟上前沿研究:关注最新研究成果和方法论。 相关网站分享: Learn Prompting:https://learnprompting.org/docs/intro AI Short:https://www.aishort.top/en/ AIPRM:https://www.aiprm.com/prompts/ Prompt Library:https://promptlibrary.org/
2024-12-09
提示词测试有哪些插件
以下是一些与提示词测试相关的插件: 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT4、AI Agents³进行提示词优化。 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
2024-12-19
AI应用于测试领域 哪些有比较成熟的、稳定的应用
目前在测试领域,AI 有一些较为成熟和稳定的应用。例如,利用机器学习算法进行自动化测试用例生成,能够提高测试效率和覆盖度;基于深度学习的图像识别技术可用于界面测试,检测界面元素的准确性和一致性;还有自然语言处理技术在测试文档的自动分析和理解方面发挥作用,帮助快速提取关键信息。但整体而言,AI 在测试领域的应用仍在不断发展和完善中。
2024-12-13
那么有什么工具吗可以生成测试用例吗
以下是一些可以生成测试用例的工具: 1. 基于规则的测试生成: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 在实践中的应用示例包括: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-09
有没有关于软件测试的ai工具,可以辅助我测试web网页
目前在 AI 领域中,专门用于辅助测试 Web 网页的工具相对较少。但一些通用的 AI 工具和技术可能会对软件测试有所帮助,例如利用自然语言处理技术来分析测试需求和报告,或者使用机器学习算法来预测可能出现的错误类型。不过,这些应用可能需要一定的定制和整合才能更好地适应 Web 网页测试的特定需求。
2024-12-09
ai 自动化测试
以下是关于 AI 自动化测试的相关内容: AI 生成测试用例的方法和工具: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 AI Prompts 测试框架: 1. Langfuse:网站为,是一个提供全面 AI Prompts 测试解决方案的平台,允许用户设计和测试 Prompts,比较不同 Prompts 的效果,并评估 AI 模型的性能。 2. Langsmith:网站为,是一个提供全面 AI Prompts 测试解决方案的平台。允许用户设计和测试 Prompts、比较和评估不同 Prompts 的效果、集成和自动化 Prompts 测试到开发流程中。 AI 大模型在游戏中的应用: 1. 游戏的 Agent 和智能体可以对数值平衡、玩法平衡、对战机器人以及玩家模拟做很多事情。 2. 数值策划方面,通过强化学习可以进行自动化的数值和玩法平衡,用 AI 测试替代人工测试,例如卡牌游戏中,AI 测试 1000 局仅需 17 分钟,而人工需要 50 个小时,且可在测试过程中调整战斗值、防御值。 3. 玩家行为模拟方面,在自博弈的训练中让机器代表攻击方和防守方,模拟玩家的行为,最终提升玩家的留存率、在线时长、活跃度和付费率,可使用深度强化学习 DRL 训练不同等级的 AI bot 模拟玩家。
2024-12-03
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
D-ID应用
DID 是一家提供 AI 拟真人视频产品服务和开发的公司。其主要特点和功能包括: 只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 推出了 Express 和 Premium+两款新数字人工具。Express 可通过一分钟视频训练模型,支持同步头部动作;Premium+需要更长视频训练,可支持手部和躯干动作。DID 表示互动视频广告的点击率和转化率分别提升了 30%和 35%。 在应用场景方面,想要制作低成本的营销视频、企业宣传视频、培训课程等,可以使用 DID 等产品,用 Avatar 代替真人出镜。 更多关于 DID 的信息,您可以访问网站查看:https://www.waytoagi.com/category/42 。请注意,在使用时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2024-12-19
如何用AI应用到抖音短视频上
以下是将 AI 应用到抖音短视频上的一些方法和流程: 1. 小说转视频: 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 2. 配乐方面: 像 Youtube、Tiktok 这类短视频内容平台,增加了“AI 配乐”的选项,让发布者在发视频前的配乐阶段,可以使用自己创作的音乐。Youtube 还和几位歌手达成了版权合作,用户可以选择歌手的声音作为歌曲人声。 在发短视频的场景,倾向于使用曲库里能触发情感共鸣和烘托氛围感的热门音乐。AI 生成的配乐,需要在情感氛围上超越曲库水平、且生成速度足够快,才能更好地发挥价值。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-12-19
换几个说法依托校企合作,深化产学研合作,推动数智中医普适性应用
以下是为您提供的几种说法: 1. 凭借校企合作,强化产学研合作,促进数智中医的普适性应用。 2. 以校企合作为依托,加深产学研合作,推进数智中医普适性应用。 3. 依靠校企合作,深化产学研合作进程,助力数智中医普适性应用。
2024-12-18