Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

模型成本

Answer

以下是关于模型成本的相关信息:

GPT-3.5 系列

  • gpt-3.5-turbo:功能强大,针对聊天优化,成本仅为 text-davinci-003 的 1/10,最大 Token 数 4096,训练数据截至 2021 年 9 月。
  • gpt-3.5-turbo-0301:gpt-3.5-turbo 2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。
  • text-davinci-003:能完成任何语言任务,支持在文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。
  • text-davinci-002:与 text-davinci-003 类似,使用监督微调训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。
  • code-davinci-002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。

其他模型供应商

  • 智谱 GLM-4V:通用视觉类大模型,拍立得最早使用,接口响应速度快,指令灵活性差些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本 0.05 元/千 tokens。
  • 阿里云百炼 qwen-vl-plus:通用视觉类大模型,拍立得目前使用,指令灵活性丰富,接口调用入门流程长,密钥安全性高,调用成本 0.008 元/千 tokens,训练成本 0.03 元/千 tokens。
  • 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本 0.005 - 0.015 元/千 tokens,输出成本 0.02 - 0.07 元/千 tokens。
  • 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在 0.05 - 0.1 元/次。

Claude 3 系列

  • Opus:最智能,擅长处理复杂任务,输入成本 15 美元/百万 token,输出成本 75 美元/百万 token,上下文窗口 200K token(特定用途 1M token 可用,详情咨询),应用场景包括任务自动化、研发、策略分析等。
  • Sonnet:平衡,应用场景包括客户服务、内容审核、优化物流等,优势在于速度和成本效益。

此外,Claude 3 系列在设计上注重安全和可靠,持续改进减少模型偏见,提高公正性和中立性,被评定为 AI 安全等级 2(ASL-2)。

Content generated by AI large model, please carefully verify (powered by aily)

References

模型(Models)

GPT-3.5模型可以理解和生成自然语言或代码。我们在GPT-3.5系列中功能最强大、最具成本效益的型号是gpt-3.5-turbo,它已针对聊天进行了优化,但也适用于传统的补全(Completion)任务。|MODEL|描述|最大Token数|训练数据||-|-|-|-||gpt-3.5-turbo|功能最强大的GPT-3.5型号,针对聊天进行了优化,成本仅为text-davinci-003的1/10。将使用我们最新的模型迭代进行更新。|4096 Token|截至2021年9月||gpt-3.5-turbo-0301|gpt-3.5-turbo 2023年3月1日的快照。与gpt-3.5-turbo不同,此模型不会更新,并且仅在2023年6月1日结束的三个月内提供支持。|4096 Token|截至2021年9月||text-davinci-003|可以以比curie、babbage、ada模型更好的质量、更长的输出和一致的指令遵循来完成任何语言任务。还支持在文本中[插入](https://platform.openai.com/docs/guides/completion/inserting-text)补全。|4097 Token|截至2021年6月||text-davinci-002|与text-davinci-003类似的功能,但使用监督微调而不是强化学习进行训练|4097 Token|截至2021年6月||code-davinci-002|针对代码完成任务进行了优化|8001 Token|截至2021年6月|我们建议使用gpt-3.5-turbo而不是其他GPT-3.5模型,因为它的成本更低。

0基础手搓AI拍立得

用成本相对较高,大家可以选择以下供应商中|模型厂商|类型|特点|成本|网址/文档||-|-|-|-|-||智谱<br>GLM-4V|通用视觉类大模型|拍立得最早使用的模型<br>接口响应速度快<br>指令灵活性差一些<br>一个接口支持图片/视频/文本,视频和图片类型不能同时输入|调用:0.05元/千tokens|[智谱接口调用示例](https://bigmodel.cn/dev/api/normal-model/glm-4v)||阿里云百炼<br>qwen-vl-plus|通用视觉类大模型|拍立得目前使用的模型<br>指令灵活性比较丰富<br>接口调用入门流程长一些,密钥安全性更高|调用:¥0.008/千tokens<br>训练:¥0.03/千tokens|[通义千问接口调用示例](https://bailian.console.aliyun.com/?spm=5176.21213303.J_qCOwPWspKEuWcmp8qiZNQ.33.14162f3drQWnj1&scm=20140722.S_card@@%E4%BA%A7%E5%93%81@@2983180._.ID_card@@%E4%BA%A7%E5%93%81@@2983180-RL_%E7%99%BE%E7%82%BC%E5%A4%A7%E6%A8%A1%E5%9E%8B-LOC_search~UND~card~UND~item-OR_ser-V_3-RE_cardNew-P0_0#/model-market/detail/qwen-vl-plus?tabKey=sdk)||阶跃星辰|通用视觉类大模型|响应速度快<br>支持视频理解|输入:¥0.005~0.015/千tokens<br>输出:¥0.02~0.07/千tokens|[阶跃星辰接口调用示例](https://platform.stepfun.com/docs/guide/image_chat)||百度PaddlePaddle|OCR,垂直小模型|文本识别能力补齐增强|私有化部署服务费<br>API调用在¥0.05~0.1/次|[Paddle OCR开源地址](https://github.com/PaddlePaddle/PaddleOCR)|

3 月动态|Claude3 发布等

以下是对Claude三款模型性能与成本的直观介绍,旨在为不同需求的用户提供清晰的选择指南。[heading4]Opus:智能[content]特点:Opus模型是目前市场上最智能的模型,擅长处理极其复杂的任务。它能够流畅应对开放式问题和全新场景,显示出类似人类的高度理解能力。成本:输入$15/百万token,输出$75/百万token。上下文窗口:200K token(对于特定用途,1M token可用,详情请咨询)。应用场景:包括任务自动化、研发、策略分析等。优势:在智能层面,超越其他所有模型。[heading4]Sonnet:平衡[content]特点:应用场景:客户服务、内容审核、优化物流等。优势:在速度和成本效益上领先,为用户提供高效的AI体验。[heading4]设计理念其及他[content]负责任的AI:Claude 3系列在设计上注重安全和可靠,通过持续跟踪和缓解风险,确保了模型的稳定运行。持续改进:Claude公司致力于减少模型偏见,提高模型的公正性和中立性。安全等级:根据负责任扩展政策,Claude 3被评定为AI安全等级2(ASL-2),展现了其在安全方面的可靠性。[heading2]文档还有简体中文版[heading2]拓展阅读[content][《GPT-4时代结束!全球最强大模型一夜易主,体验完Claude 3我更期待GPT-5了》](https://mp.weixin.qq.com/s/eR9DLV19IK5WonyNtQgr2A)

Others are asking
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
帮我总结现在主流的AI大模型,以及各自优劣
以下是对主流 AI 大模型的总结及各自优劣的相关内容: 主流 AI 大模型: 1. 谷歌的 BERT 模型:可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 相关技术概念: 1. AI:即人工智能。 2. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:参照人脑,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-02-26
大模型训练全流程
大模型训练通常包括以下全流程: 1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。 此外,大模型训练还可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 一般训练还会有以下步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 2. 清洗出好的数据。 3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。 4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。
2025-02-26
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI模型私有化部署
AI 模型私有化部署具有以下特点和情况: 挑战方面: 在许多中小型行业,如金融、医疗和法律行业,由于对数据私密性要求极高,客户隐私敏感度高,往往需要私有化部署场景,这大大增加了企业培训的难度。 访问 GPT 有门槛,国企类、体制类的合作伙伴可能受限,需要寻找更易于接入的国产模型作为替代方案,如智谱等。 工程化落地难,企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。例如某金融企业希望使用大模型构建 AI 智能问答机器人并私有化部署,但因自身规模不大且无数字化系统,实际落地成本可能不比传统人力成本节省更多。 经验分享方面: 构建企业知识库是常见需求,一种普遍解决方案是结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可进行模型的 Finetuning(微调)以优化性能。 基础模型提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。通过 Finetuning 可增强基础模型的知识库、调整输出和教授更复杂指令,提高模型整体性能和效率。 360 愿意为有能力的企业赠送免费的私有化部署通用大模型,其可解决隐私泄露和数据流失问题,满足科普和一些通用需求,如办公等。同时提供 360AI 办公的会员服务,围绕办公营销需求做了很多工具,并将其场景化。
2025-02-26
为什么deepseek可以实现低成本
DeepSeek 能够实现低成本的原因可能包括以下几点: 1. 采用了独特的技术架构或算法,例如 GRPO 算法替代传统 PPO,降低了价值函数估计难度,提高了语言评价场景的灵活性与训练速度。 2. 在性能上能够媲美领先的 AI 产品,但成本仅为其一小部分,从而实现了成本的有效控制。 3. 在实际使用体验中,虽然在某些方面存在不足,如专业论文总结方面稍弱,但在其他方面表现良好,可能通过优化资源配置实现了成本的降低。 需要注意的是,以上是根据所提供的内容进行的推测和总结,具体的低成本原因可能还需要更详细和准确的技术分析及相关资料。
2025-02-10
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
大模型成本趋势
大模型的成本趋势如下: 目前存在唱衰大模型的观点,认为其难以找到可商用场景,部分功能存在幻觉问题,且算力成本高,导致商业模式难以形成闭环。 但也有观点认为,关于算力成本,已有许多解决方案,如模型蒸馏、苹果的端云方案等,今年内算力成本问题有望不再是难题。 对于不同规模的模型,小模型在某些特定应用中有其优势且足够好用,但大模型会解锁新的有价值的应用程序。不过并非所有应用都能证明大模型的成本合理。 在多模态大模型方面,随着数据集和模型规模扩大,传统模型带来巨大计算量。研究人员利用现成训练好的单模态基础模型,可减少多模态训练费用、提升效率。不同模态模型分开训练,如何实现模态连接和协同推理是核心挑战。
2024-12-19