Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想整理现在国内和国外的大语言模型产品并需要你整理差异还有时间轴

Answer

以下是对国内外大语言模型产品的整理及差异:

国内大语言模型:

  • 通用模型:如文心一言、讯飞星火等,能够处理自然语言。
  • 垂直模型:专注于特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。
  • 具有代表性的项目:“悟道・天鹰”(北京智源人工智能研究院)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型;文心一言(百度)可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。

国外大语言模型:

  • 具有代表性的项目:GPT-4(OpenAI)是目前最先进的自然语言生成模型,可用于回答问题、撰写文章等;Gemini Ultra(Google)是多模态人工智能模型,采用神经网络架构,对标 GPT-4,可用于回答问题、生成代码、处理文本等;Claude 3 Opus(Anthropic)是多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。

时间轴方面:

  • 国内:去年 7 月大模型百花齐放。
  • 国外:相关模型也在不断发展和更新。

在工作原理上,大语言模型通常包括训练数据、算力、模型参数等要素。在训练数据一致的情况下,模型参数越大能力越强。Transformer 架构是大语言模型训练的常见架构,具备自我注意力机制能理解上下文和文本关联。同时,大模型可能存在幻觉,即因错误数据导致给出错误答案,优质数据集对其很重要。此外,Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 Prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等。还可以基于通用大模型进行 Fine tuning 微调,以适应特定领域的需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

02-基础通识课

[heading2]智能章节本章节主要提到一个有意思的活动,可以看到一些出题海报且银海有参与。活动的出题来源是弱智巴的题目,会建微信群让群里bot变为大语言模型回复问题,真人混在机器人中,让人分辨。还提到去年国内大模型回答这些题多失败,今年有很大改进,最后提议用几个大模型产品测试问题反应。[10:48](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=648000)大语言模型的早期特点及通用、垂类模型的介绍本章节主要讲述大语言模型相关内容。提到早期大模型存在缺乏情感、一本正经胡说八道的情况。还介绍了国内去年7月大模型百花齐放,包含通用模型(如文心一言等)和垂直模型,垂直模型针对特定领域,如小语种、临床医学、AI蛋白质结构预测等。[13:38](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=818000)对比不同大模型对趣味问题的回应及续写差异本章节先提出让大家用大模型体验回答“为什么爸妈结婚没邀请我”的问题,展示了Kimi、通义千问的回答情况并期待豆包的回答。还提到让大模型续写“今天我坐在凳子上”,发现各模型回复有差异。最后指出大模型是统计模型,会根据概率预测并返回信息,所以每次续写内容都不同。[17:13](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=1033000)大语言模型工作原理:训练数据、算力GPU、模型参数的作用

2024AIGC法律风险研究报告(更新版).pdf

文本生成(text generation)涉及使用机器学习(machine learning)模型,根据从现有文本数据中学习的模式生成新的文本。用于文本生成的模型可以是马尔科夫链(Markov Chains)、循环神经网络(RNN)、长短时记忆网络(LSTMs),2AIGC法律风险研究报告以及凭借其延长的注意力广度(attention span)而彻底改变了AI领域的Transformer等。文本生成在自然语言处理、聊天机器人和内容创建领域(自动写作、文本摘要)有许多应用。[heading1]一些具有代表性的海外项目:[content]➢GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。➢Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标GPT-4,可用于回答问题、生成代码、处理文本等。➢Claude 3 Opus(Anthropic):多模态模型,能处理超过1百万token的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。[heading1]一些具有代表性的国内项目:[content]➢“悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。➢文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。

Others are asking
我想学习Ai绘画,请帮我整理一个学习计划。
以下是为您整理的 AI 绘画学习计划: 一、基础学习阶段(12 个月) 1. 第一个月 了解 AI 绘画的基本原理和常用工具,如 StableDiffusion(SD)、Midjourney 等。 学习相关的理论知识,可参考《生成式 AI 导论 2024》李宏毅、Introduction to Image Generation Google AI 课程等。 2. 第二个月 深入学习所选工具的教程,掌握基本操作和功能。 尝试使用不同的提示词进行简单的绘画创作。 二、实践练习阶段(23 个月) 1. 第三个月 针对不同的主题,如人脸、画风、风景、景观、建筑等进行炼丹练习。 注意提高图片数据集的质量,以获得更好的效果。 2. 第四个月 与小伙伴探讨 AI 绘画的变现途径,尝试参与相关项目。 练习绘本风格的绘画。 3. 第五个月 即使在没有硬件支持的情况下,继续学习和巩固知识。 加入相关社群,如 Prompt battle 社群,学习新的技巧和经验。 三、巩固提升阶段(长期) 1. 不断优化提示词,提高绘画的质量和创意。 2. 定期评估学习成果,总结经验教训,调整学习方向。 需要注意的是,学习 AI 绘画需要耐心和持续的实践,祝您学习顺利!
2025-03-07
整理国内 AI投融资信息
以下是为您整理的国内 AI 投融资信息: 2024 年,国内 AI 行业融资总金额增加,但事件数同比下降,反映出机构更加谨慎的理性态度,马太效应越发明显,资本更青睐热点赛道和高成熟度赛道。 在各细分赛道中,智能驾驶独占鳌头,投资事件数量和金额总数远超其他赛道,且多家企业成功 IPO 为市场注入了巨大信心与活力。AI+教育、AI+游戏、AI+医疗等赛道也迎来了投资总额的增长,机构对技术难度更高、壁垒更强、更晚达到 TPF(TechnologyProduct Fit)的赛道展现出更强兴趣。 在政策方面,政府对 AI 技术本身及其在各行业落地长期关注,积极推进 AI 原生行业发展,北京、上海、武汉等城市已出台一系列政策,吸引 AI 相关人才聚集与企业落地。同时,国家队频繁出手投资体现出政策的鼓励与支持。
2025-03-07
整理几个agi工具网站
以下是为您整理的一些 AGI 工具网站: 在线 TTS 工具: 1. Eleven Labs:https://elevenlabs.io/ 是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,模拟人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 人工智能驱动的文本转语音工具,可将文本转换为音频文件,可在多种平台使用。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 制作网站的 AI 工具: 1. Zyro:https://zyro.com/ 使用 AI 生成网站内容,包括文本、图像和布局建议,提供 AI 驱动的品牌和标志生成器,包含 SEO 和营销工具。 2. 10Web:https://10web.io/ 基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计,提供一键迁移功能,集成 AI 驱动 SEO 分析和优化工具。 3. Jimdo Dolphin:https://www.jimdo.com/ 是 Jimdo 的 AI 网站构建器,通过询问用户问题定制网站,提供自动生成的内容和图像,包含电子商务功能。 4. Site123:https://www.site123.com/ 简单易用,适合初学者,提供多种设计模板和布局,包括内置的 SEO 和分析工具。 内容由 AI 大模型生成,请仔细甄别。
2025-03-06
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
有没有什么可以用于会议纪要整理的AI软件
以下是一些可以用于会议纪要整理的 AI 软件: 1. 团队会议总结 Vowel:https://www.vowel.com/ 2. Personalized AI,Everywhere.:https://www.augment.co/?ref=superhuman1_mar23&utm_source=superhuman.beehiiv.com&utm_medium=newsletter&utm_campaign=thisaicanhackinterviews 3. Noty 会议总结为待办事项:https://noty.ai/ 4. The 6 Best AI Tools for Meeting Notes in 2024:https://www.meetjamie.ai/blog/the6bestaimeetingtools 5. The smartest AI team assistant Sembly AI:https://www.sembly.ai/ 6. Briefly: AI meeting summary&email follow up Chrome 应用商店:https://chrome.google.com/webstore/detail/brieflyaimeetingsummar/bjmgcelbpkgmofiogkmleblcmecflldk 7. Welcome fireflies.ai:https://app.fireflies.ai/ 8. Noota Screen Recorder&Meeting Assistant Chrome 应用商店:https://chrome.google.com/webstore/detail/nootascreenrecordermee/eilpgeiadholnidgjpgkijfcpaoncchh 9. Read Meeting Reports:https://app.read.ai/analytics/meetings 10. Read Create Workspace:https://app.read.ai/analytics/settings/workspace/new 11. 10 AI Notes Taking Tool to Summarize Meetings in Seconds Geekflare:https://geekflare.com/ainotestakingtools/ 此外,还有以下免费的会议语音转文字工具,不过大部分有使用的时间限制,超过一定的免费时间后可能需要付费: 1. 飞书妙记:https://www.feishu.cn/product/minutes 2. 通义听悟:https://tingwu.aliyun.com/home 3. 讯飞听见:https://www.iflyrec.com/ 4. Otter AI:https://otter.ai/ 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-24
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
最近的论文AI模型
以下是关于 AI 模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因层数多而称深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-09
【深度拆解】ChatGPT-4o背后的技术革新:从语言模型到多模态跨越
ChatGPT4o 背后的技术革新具有重要意义。人类的感知多样,仅靠语言描述世界远远不够,多模态理解非常有用,能更全面学习世界、理解人类需求等。2023 年 9 月 GPT4v 发布,将大语言模型竞赛带入多模态模型时代,如 ChatGPT 能看图说话、画图,Google 的 Gemini 支持多种模态,但 OpenAI 常抢先发布。今年 5 月 OpenAI 发布 GPT4o,向智能体方向迈进,其是之前技术的集大成者,通过端到端神经网络混合训练视觉、语音和文本数据,平均音频输入反应时间为 300 毫秒,能感悟人类表达的情绪等。OpenAI 未公开 GPT4o 技术细节,唯一线索来自内部炼丹师的博客 AudioLM。此外,GPT4 是 OpenAI 的多模态工具,在编程任务中表现出色,ChatGPT 是用户友好界面,可与高级语言模型交互。2024 年 5 月 14 日 OpenAI 发布 GPT4o,效率高、价格降低、延迟缩短。9 月 16 日 OpenAI 推出 o1 系列模型,在复杂任务中表现优异,o1mini 适合编码任务,两个模型已在 ChatGPT 中提供,有免费或收费版本。
2025-03-09
如何搭建大模型
搭建大模型需要注意以下几个方面: 1. 认识到开发大模型应用的复杂性,许多细节和阶段在实际操作中才会逐渐显现,因此并非易事。 2. 提示词设计需要精细工作,精心设计和调试是确保流程顺畅和应用有价值的关键,其直接影响模型输出质量和应用效果。 3. 构建有效的大型语言模型应用需要: 重视工程化,避免模型应用无法维护。 根据项目需求选择合适的开发框架。 了解业务深层次需求,设定流程环节以确保模型能解决实际问题。 在每个环节精心设计提示词,引导模型提供准确有用的回复。 确保应用在提供服务时遵守安全和伦理标准。 通过不断测试和迭代优化模型性能和用户体验。 成功部署后持续维护和更新,以适应需求变化。 掌握这些关键点,能确保构建的模型应用技术先进,真正解决用户问题并提供有价值的服务。此外,本次的彩蛋更新加入了“Emotion”字段,智能体构建专家会动态推理智能体情感设定,帮助制作更有情商的智能体。
2025-03-07
法律 大模型 都有哪些
以下是一些法律大模型: ChatLaw:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来)、ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升)、ChatLawText2Vec。使用 93 万条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。地址:训练而来,中文各项表现很好,但逻辑复杂的法律问答效果不佳,需要用更大参数的模型来解决。
2025-03-07
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07
是否有可以免费使用的可以辅助机械设计的AI大模型
以下是一些可以免费使用且能辅助机械设计的 AI 大模型: 1. Trae 国内版:内置豆包 1.5 pro、DeepSeek 满血版等大模型,无限量免费使用。其作为 AI IDE,整体比插件好用,连接稳定快速,界面根据国内用户习惯定制。 2. 阿里的通义千问大模型:有免费接口,但可能存在一定的免费额度限制。 3. 智谱 AI(ChatGLM):有免费接口,同样可能有免费额度的限制。 4. 科大讯飞(SparkDesk):提供免费接口,可能有限制免费额度的 Token。 此外,谷歌的 Gemini 大模型和海外版 Coze 的 GPT4 模型免费且能图片识别,但使用时需要给服务器挂梯子。
2025-03-07
我的工作是财务会计,经常需要对账,输入是2个Excel表格,但格式内容都有不少差异,哪些大模型或者工具可以帮我快速完成这个工作?
以下是一些可能有助于您快速完成对账工作的大模型或工具: 1. Coze 记账管家:它能通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库。工作流程包括定义提示词,让大模型拆解并识别记账事项、发生时间、变动金额等,然后将这些数据存入数据库。 2. GLM4AllTools:可用于统计平台月度账单,例如您可以从平台导出月度明细数据,上传账单给沙盒,让模型统计账单数据和用量,还能分析账单数据波动。 3. 生成式 AI:在金融服务领域,它能帮助改进内部流程,如预测编写 Excel、SQL 和 BI 工具中的公式和查询,自动创建报告的文本、图表、图形等内容,为会计和税务团队提供税法和扣除项的可能答案,以及帮助采购和应付账款团队自动生成和调整合同、采购订单和发票等。
2025-02-15
coze中的工作流 智能体 应用 bot 分别有什么特点差异共同点,作为新手小白应该如何逐步上手
Coze 中的工作流、智能体、应用 Bot 具有以下特点、差异和共同点: 特点: 工作流:包括图像工作流,可进行图像流分类(如智能生成、智能编辑、基础编辑),按照构架配置工作流,调试效果等。 智能体:设定角色,对工作流有详细描述和调用规则,能实现从简单到复杂的不同流程自动化。 Bot:有不同的运作模式(单智能体模式和多智能体模式),可选择模型,配置技能(如插件、工作流、图像流和触发器等),还有知识区域和记忆区域。 差异: 工作流侧重于具体的任务流程配置和图像处理方面。 智能体更注重角色设定和工作流的调用规则。 Bot 则在运作模式、模型选择和技能配置上有独特之处。 共同点: 都与 Coze 平台相关,相互配合以实现各种功能。 对于新手小白逐步上手的建议: 先了解 Coze 平台的基本操作和界面。 从简单的图像工作流开始尝试,熟悉工作流的创建和配置流程。 逐步学习智能体的设定和工作流的调用规则。 再深入研究 Bot 的模式选择、模型选择和技能配置。 参考平台提供的示例和教程,多进行实践和调试。
2024-12-31
以下是大致可以采用的步骤来实现这样一个能自动在大语言模型网站生成不同场景机器人图片的程序(以下以Python语言示例,不过不同平台具体实现会有差异且需遵循对应网站的使用规则和接口规范): ### 1. 选择合适的大语言模型网站及确认其API(应用程序编程接口)情况 不同大语言模型网站对于图片生成通常会提供相应的API来允许外部程序与之交互,比如部分知名的AI绘画相关平台。你需要先确定要使用哪些网站,然后去注册开发者账号等,获取对应的API Key以及详细的API文档,了解如何通过代码向其发起图
以下是为您整合的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,用户能轻松在本地环境启动和运行大模型。 3. 提供模型库,用户可从中下载不同模型,这些模型有不同参数和大小以满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装:访问 https://ollama.com/download/ 进行下载安装。安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 基于 COW 框架的 ChatBot 实现步骤: 1. COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 2. 基于张梦飞同学的教程: 。 3. 实现内容: 打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)。 常用开源插件的安装应用。 4. 正式开始前需知: ChatBot 相较于在各大模型网页端使用区别:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项: 微信端因非常规使用,有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保所有操作均符合相关法律法规要求。 禁止用于任何非法目的。 处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 5. 多平台接入:微信、企业微信、公众号、飞书、钉钉等。 6. 多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 7. 多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 8. 多部署方法:本地运行、服务器运行、Docker 的方式。
2024-12-29
ollama跟llama.cpp差异
Ollama 和 llama.cpp 存在以下差异: 1. 功能特点: Ollama 是一个开源的大型语言模型服务,能方便地部署最新版本的 GPT 模型并通过接口使用,支持热加载模型文件,无需重新启动即可切换不同模型。 llama.cpp 是将 Facebook 的 LLaMA 模型在 C/C++ 中的实现。 2. 部署和使用: Ollama 的安装和使用相对简单,例如在 Mac 系统中,可通过以下两步完成:打开 ollama.com 下载应用并安装;在终端输入相应指令运行模型。 llama.cpp 编译时为利用 Metal 的 GPU 有特定命令,还需下载模型,且提供了 WebUI 供用户使用。 3. 支持的模型: Ollama 支持如 Google Gemma 等小型模型的本地部署。 llama.cpp 支持 LLaMA 模型。 4. 性能表现: Ollama 中 2b 版本反应速度快但互动话题有限,7b 版本输出内容质量相对高但可能有卡顿,对非英文语种反馈不稳定。
2024-12-09
a800 ,H100,a10,H800这4个显卡能力有啥差异
以下是 A800、H100、A10、H800 这 4 个显卡在能力上的一些差异: 在训练与推理方面: 对于大型模型的训练,许多模型在 NVIDIA H100 上最具成本效益,但获取在 NVIDIA H100 上运行的模型较难,且通常需要长期合作承诺。如今更多的选择是在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需要长期承诺。 大型语言模型(LLM)的参数数量众多,通常需要分布到多个卡中,即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(例如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10 等显卡。 在内存要求方面: 大型 LLM 的参数数量太多,任何单卡都无法容纳,需要类似于训练的多卡设置。 对于一些较小的模型,A10 等显卡可能就能够满足其内存需求。 需要注意的是,决定选择哪种 GPU 主要是一个技术决策,需要根据具体应用来确定最具成本效益的选择。
2024-10-16
你认为Agent和ChatBot聊天对话机器人的差异在哪?
Agent(智能体)和 ChatBot 聊天对话机器人存在以下差异: 任务执行方式:Agent 是执行特定任务的 AI 实体,拥有复杂的工作流程,可以迭代运行,模型本质上能够自我对话,无需人类驱动每一部分的交互;而 ChatBot 通常是用户提出问题后获得一个答案作为回应。 组成和功能:Agent 是大型语言模型(LLM)、记忆(Memory)、任务规划(Planning Skills)以及工具使用(Tool Use)的集合,例如在自动驾驶、家居自动化、游戏 AI、金融交易、客服聊天、机器人等领域发挥作用;而 ChatBot 相对功能较为单一。 处理能力和效率:像 Coze Agent 这样的多 Agent 模式采用分布式计算范式,将复杂任务分解为多个子任务并由独立的智能体并行处理,从而提高系统的处理能力和效率。 参考文章: https://logankilpatrick.medium.com/whataregptagentsadeepdiveintotheaiinterfaceofthefuture3c376dcb0824 https://lilianweng.github.io/posts/20230623agent/ https://waytoagi.feishu.cn/record/1sfvuej0sATQfbO6zbeEAWk02
2024-09-04