Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何去训练ai,让ai可以更精准的回答问题分析趋势

Answer

要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手:

检索原理

  1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。
  2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。
  3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。
  4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。
  5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。
  6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。

大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。

批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。

纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

1.信息筛选与确认:2.首先,系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容。这通常涉及到对信息的来源、时效性和相关性进行验证。3.消除冗余:4.在多个文档或数据源中,可能会有重复的信息。系统需要识别和去除这些冗余内容,以防在生成回答时出现重复或相互矛盾的信息。5.关系映射:6.系统将分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。这有助于构建一个结构化的知识框架,使得信息在语义上更加连贯。7.上下文构建:8.将筛选和结构化的信息组织成一个连贯的上下文环境。这通常包括对信息进行排序、归类和整合,使其形成一个统一的叙述或解答框架。9.语义融合:10.在必要时,系统可能会进行语义融合,即合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。11.预备生成阶段:12.最后,整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。④、大模型生成回答1、生成器:最终全新的上下文被一起传递给大语言模型。随后,大语言模型(LLM)根据提供的信息来回答问题。因为这个上下文包括了检索到的信息,因此大语言模型相当于同时拿到了问题和参考答案,通过LLM的全文理解,最后生成一个准确和连贯的答案。

[趋势研究] Deep Research - AI时代的独立个体

批判性思维(Critical Thinking)指的是分析、评估、推理并做出明智判断的能力。这在AI泛滥的信息时代显得尤为关键。正如澎湃新闻所言:“拥有批判性思维的人,能够深入分析问题,提炼出新颖见解,以及权衡不同解决方案优劣。批判性思维可以帮助我们判断人工智能技术的判断是否合理。”​AI提供了海量信息,但孰真孰假、孰优孰劣,还得靠人类理性去辨析。培养批判性思维,需要我们养成质疑的习惯,见到观点先问凭什么、有没有证据支撑?教育上,可以通过辩论、逻辑训练、阅读反面意见等方式来锻炼这种思维。也要注重逻辑推理和定量分析能力的培养,比如学习基础的统计学、逻辑学知识,懂得如何从数据和论证结构上挑漏洞。复杂问题解决(Complex Problem Solving)与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力。这往往需要综合运用多种思维技能:比如先用批判性思维拆解问题,找出关键瓶颈,再发挥创造力想出方案,最后用逻辑和数据验证方案可行性。AI在这里能帮忙提供信息和模拟,但是提出问题和综合决策的过程仍需要人来主导。我们可以通过参与实际复杂项目、案例研究来提高解决复杂问题的经验。一个行之有效的方法是刻意接触一些开放性问题(没有标准答案的难题),练习从不同角度制定方案。例如社会问题、商业策略、科研难题等都可以作为练习素材。在这个过程中,不妨使用AI作为资料提供者或头脑风暴助手,但决不要让AI直接给出最后答案——因为关键在于我们自己的分析和决策过程。如果能坚持这么做,就能避免“大脑变懒”,反而利用AI不断锻炼出更强的分析推理能力。正如世界经济论坛的报告也指出,到2025年最重要的技能里分析性思考和创造性思维仍排名前列,这说明即便AI再强,这些人类高阶思维能力依然无可替代且需求上升。

非技术人 10 分钟读懂 Deepseek R1|天才模型养成与 AI 超越人类的破晓时刻

而DeepSeek R1则引入了纯强化学习(RL),不依赖大量的人类标注数据,而是让AI通过自我探索和试错来学习:DeepSeek R1在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后,便主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励:用于评估AI提供的最终答案是否正确,以此为AI提供答案准确度的反馈。格式奖励:强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。正如Alpha Zero只训练了三天,就以100比0的战绩完胜Alpha Go Lee(战胜李世石的版本)。Alpha Go(老):监督学习+强化学习。学习人类棋谱,也更接近人类职业棋手的风格,继承了人类的局限。Alpha Zero(新):完全摒弃人类数据的纯强化学习。从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。大模型AI在纯强化学习(RL)下同样也展现出了超出人类研究员想象的成长潜力:“我们只需要简单的为其提供正确的激励措施,它就会自主开发高级的问题解决策略,RL有可能解锁新的人工智能水平。”*只不过Alpha Zero的强化学习更加专精棋类。而DeepSeek R1在训练中,更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
如何搭建精准回答的本地知识库
搭建精准回答的本地知识库可以参考以下步骤: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入知识库页面,并单击创建知识库。 4. 在弹出的页面配置知识库名称、描述,并单击确认。需注意一个团队内的知识库名称不可重复,必须是唯一的。 5. 在单元页面,单击新增单元。 6. 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。 如果想要对知识库进行更加灵活的掌控,可以使用额外的软件AnythingLLM,其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在AnythingLLM中有一个Workspace的概念,可以创建自己独有的Workspace跟其他的项目数据进行隔离。具体操作如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式,AnythingLLM提供了两种对话模式: Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。
2025-03-11
怎么在AI文生图中精准的输出想要的文字
要在 AI 文生图中精准输出想要的文字,可以参考以下方法: Recraft 模型: 提供提示词加上文本位置,因为模型获得的输入数据越多,越容易产生精确输出。遵循指令比仅理解提示词更容易。 Tusiart 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 局部重绘:下篇再学。 设置 VAE:选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 Liblibai 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 设置 VAE:选择 840000 即可。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 生成批次:默认 1 批。
2025-03-06
如果用AI精准且快速总结视频网站的视频。
要使用 AI 精准且快速总结视频网站的视频,可参考以下步骤: 1. 对于有字幕的视频,如 B 站视频,先确认视频栏下方是否有字幕按钮,若有则说明视频作者已上传字幕或后台适配了 AI 字幕。 2. 安装油猴脚本“Bilibili CC 字幕工具”,安装后刷新浏览器,点击字幕会出现“下载”按钮。 3. 点击下载按钮,选择多种字幕格式,如带时间或不带时间的。 4. 将下载的字文字内容全选复制发送给 GPTs 进行总结。 5. 总结完视频内容后,还可继续向 AI 提问更多细节内容或与其探讨视频内容。 此外,通义千问的 Qwen2.5VL 模型在视频理解方面也有出色表现,如支持最长 1 小时视频理解,具备秒级的事件定位能力,能够对视频的不同时间段进行要点总结等。
2025-03-06
图片的提示词的精准度
以下是关于图片提示词精准度的相关内容: 画面精度提示词: high detail(高细节) hyper quality(高品质) high resolution(高分辨率) FHD, 1080P, 2K, 4K, 8K 8k smooth(8K 流畅) 渲染效果提示词: Unreal Engine(虚幻引擎) octane render(渲染器) Maxon Cinema 4D 渲染器 architectural visualisation(建筑渲染) Corona Render(室内渲染) Quixel Megascans Render(真实感) VRay(V 射线) Behance C4D 3D blender surreal photography(超现实摄影) realistic 3D(真实 3D) zbrush 在描述图片提示词时,通常的逻辑包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,有以下辅助书写提示词的方法和网站: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 功能型辅助网站,如:http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数有缩略图参考,方便直观选择提示词。 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,Stable Diffusion 会自动匹配参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。提示词的效果受模型影响,不同模型对自然语言、单词标签等语言风格的反应不同。 提示词中可以填写以下内容: 自然语言:可以使用描述物体的句子作为提示词,大多数情况下英文有效,也可用中文,避免复杂语法。 单词标签:使用逗号隔开的单词作为提示词,一般使用普通常见单词,单词风格要和图像整体风格搭配,避免拼写错误,可参考 Emoji、颜文字:Emoji 表情符号准确且在语义准确度上表现良好,对构图有影响。关于 emoji 确切含义,可参考。对于使用 Danbooru 数据的模型,西式颜文字可在一定程度上控制出图的表情。
2025-02-26
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
如何精准提问解决问题
要精准提问解决问题,可以参考以下几点: 1. 在使用类似 Cursor 等工具时,如果在提示栏中按 Option/Alt Enter,它将回答您关于选择和附加上下文的任何问题。此对话内容可在后续生成中进一步使用,在其提出响应后键入“do it”即可在快速提问后生成代码。 2. 相信类似 GPT 等工具的能力,大胆提要求让其帮忙完成。 3. 明确自己的需求,向 GPT 提的要求尽量准确,如同给员工安排工作。 4. 不断追问,只要不明白,就目标明确、表达精确地追问。 5. 对于 GPT 不了解您工作环境和个性需求的情况,提供准确信息,如直接贴出文件目录地址,请其直接处理。 6. 锻炼语言表述能力,更精准地用语言描述问题。因为在语言模型时代,一个好的问题某些时候比答案更重要,语言本身也代表着人类思维的外放,与文明诞生有关联。 7. 具备业务理解和 AI 嵌入能力,找到业务中应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 8. 培养维度转换能力,将各种问题转化为语言问题,将业务中的数据转化为语言描述,将通用模块问题转化为通用问题模块,把所有信息都转化为语言信息后再交流。 9. 在业务助手中,可采用助手方式,主要进行工作辅助,不在主业务流程内,大模型负责优化、检索、启发、提供思路等,帮助人提高效率、多维度思考;也可采用业务环方式,大模型经过调整和 prompt 工程后,作为接口服务,进入到主业务流程中,自动处理内容并生成结果。
2025-01-30
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
你是基于哪种ai模型的回答?
我是基于 Aily 和云雀大模型进行回答的。 Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是由字节跳动研发的语言模型,能通过便捷的自然语言交互,高效完成互动对话、信息获取、协助创作等任务。 您可以通过以下两种方式使用我: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,请在知识库首页获取最新二维码),然后点击加入,直接@机器人即可。 2. 在 WaytoAGI.com 的网站首页,直接输入您的问题,即可得到回答。
2025-04-11
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
具身智能是什么技术?用小学生能理解的话术回答
小朋友,具身智能呀,是人工智能里的一种很有趣的技术。 它说的是像机器人、虚拟代理这样的智能体,要通过和真实世界或者虚拟环境直接打交道来变得更聪明。 比如说,智能体要有能感觉周围环境的能力,能自己到处走,能拿东西、操作东西,还能学习新本领,适应新环境。 具身智能很在意智能体的“身体”,这个“身体”可以是机器人的样子,也可以是游戏里的虚拟角色。这些“身体”能帮智能体和环境互动,还会影响智能体学习。 像机器人可以通过它的手学会抓东西、摆弄东西,虚拟代理在游戏里能学会解决问题。 研究具身智能要用到好多知识,像机器人学、认知科学、神经科学还有计算机视觉。 在机器人领域,具身智能能让机器人更好地理解和适应我们人类的生活环境,跟我们交流更自然。在虚拟现实、增强现实和游戏里,也能让我们玩得更开心。 不过呢,具身智能还有一些难题要解决,比如怎么设计智能体的身体让它更聪明,怎么让它在复杂的环境里好好学习,还有怎么处理它和人类社会相关的一些问题。 简单说,具身智能就是给聪明的人工智能装上“身体”,让它能和周围环境更好地交流互动。
2025-04-05
作为小白如何在飞书搭建AI工具知识库机器人?分成前期、中期、后期流程回答
以下是小白在飞书搭建 AI 工具知识库机器人的流程,分为前期、中期和后期: 前期: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用不同的大模型,并了解如何白嫖大模型接口。 2. 确定机器人的功能范围,例如: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”内容回答,不足时调用 AI 大模型,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在微信公众号上,作为“微信客服助手”。 中期: 1. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,若不想接入微信,到此搭建完成即可,它也有问答界面。 2. 准备以下内容: 根据机器人的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可以用 word、txt、excel 等方式。 创建自己的【知识库】用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号。 后期: 搭建,其中的 cow 插件能进行文件总结、MJ 绘画等。
2025-04-03
我想了解如何提取自己的声音并实现大模型以我的声音回答我
要提取自己的声音并实现大模型以您的声音回答,目前提供的知识库中没有直接相关的详细内容。但可以为您提供一些可能有用的思路和参考方向: 对于声音提取,可能需要使用专业的音频处理软件和设备,将您的声音录制并进行处理和分析。 关于让大模型以您的声音回答,这可能涉及到语音合成技术。您可以先了解一些常见的语音合成模型和工具,例如通过创建大模型问答应用,获取推理 API 服务等。 同时,还可以参考一些关于大模型和语音处理的专业知识,比如大模型的本质是基于语言的概率模型,通过设置合适的 Prompt 来引导模型输出更准确的结果。 由于知识库中没有确切的针对您需求的详细步骤和方法,以上内容仅供您初步参考。
2025-04-01