机械学习和深度学习的关系如下: 机器学习是指机器自动从资料中找一个公式,而深度学习是一种机器学习技能。深度学习基于类神经网络,具有非常大量参数的函数。在 AI 的范畴中,机器学习和深度学习都属于实现让机器展现智慧这一目标的方法和技术。
1.定义1.1.Artificial Intelligence,AI-人工智慧(目标)-让机器展现智慧1.2.Generative AI生成式人工智能-机器产生复杂有结构的物件有结构✅复杂✅有限的选项中做选择❌AI和AGI的关系1.1.Machine Learning机器学习~机器自动从资料中找一个公式机器学习Deep Learning深度学习-一种机器学习技能类神经网络-非常大量参数的函数AI/AGI/ML/DL的关系2.ChatGPT也就是个公式,AI画图也是个公式Transformer是类神经网络的一种G/P/TAI画图也是公式1.ChatGPT就是文字接龙语言模型-答案有限,把复杂的问题变成分类问题生成策略-Autoregressive Generation回归关系[heading2]第2讲:生成式AI厉害在哪里,从「工具」变为「工具人」[content]1.GPT4大升级,贵有贵的道理1.不要问ChatGPT能做什么,要问你想要ChatGPT帮你做什么对比了下,kimi没法生成图片,告诉了我可以借助其他工具但是智谱清言甚至写了python代码,帮我生成了文字云!智谱清言Kimi1.我可以做什么1.1.改不了模型,改变自己,用好模型-更清楚的指令/提供额外资讯1.2.训练自己的模型,调整开源模型参数-注意,可能衍生很多问题
1.定义1.1.Artificial Intelligence,AI-人工智慧(目标)-让机器展现智慧1.2.Generative AI生成式人工智能-机器产生复杂有结构的物件有结构✅复杂✅有限的选项中做选择❌AI和AGI的关系1.1.Machine Learning机器学习~机器自动从资料中找一个公式机器学习Deep Learning深度学习-一种机器学习技能类神经网络-非常大量参数的函数AI/AGI/ML/DL的关系2.ChatGPT也就是个公式,AI画图也是个公式Transformer是类神经网络的一种G/P/TAI画图也是公式1.ChatGPT就是文字接龙语言模型-答案有限,把复杂的问题变成分类问题生成策略-Autoregressive Generation回归关系[heading2]第2讲:生成式AI厉害在哪里,从「工具」变为「工具人」[content]1.GPT4大升级,贵有贵的道理1.不要问ChatGPT能做什么,要问你想要ChatGPT帮你做什么对比了下,kimi没法生成图片,告诉了我可以借助其他工具但是智谱清言甚至写了python代码,帮我生成了文字云!智谱清言Kimi1.我可以做什么1.1.改不了模型,改变自己,用好模型-更清楚的指令/提供额外资讯1.2.训练自己的模型,调整开源模型参数-注意,可能衍生很多问题
因此在这个例子中,我们通过手动探索并选择了能获得更好的表征方式的变换。但是,假如我们能开发一个系统或程序来自动搜索不同的表征(在这个例子中是坐标变换),然后确定新方法的分类准确率的计算方式,这时候就变成了机器学习。这一点很重要,深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。而没有深度学习中的突破性研究,这一切也将不可能出现,这里我列出几个经典案例:1:反向传播参考阅读:[被Geoffrey Hinton抛弃,反向传播为何饱受质疑?(附BP推导)](http://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650731098&idx=1&sn=c7391caee3a567b4b046406d53f022f2&chksm=871b3624b06cbf320f3725fe452d291e04a4a8c1beda8ee9e00f1d10266847be4736090aade3&scene=21#wechat_redirect)A theoretical framework for Back-Propagation——Yann Lecun:http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf2:更好的初始化网络参数。需要记住的是:初始化策略需要根据所使用的激活函数来选择。参考阅读: