Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

深度学习

Answer

深度学习是一个源于新方法和策略的领域,旨在克服梯度消失问题以生成深层非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流以训练深层结构,此后人们对深度学习的兴趣日益增长。

深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。长短时记忆循环神经网络允许网络收集过去几百个时间步的活动以做出准确预测,自 2013 年以来其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

在分层特征学习中,提取多层非线性特征并传递给分类器进行预测。由于无法从几层中学习复杂特性,所以叠加深层次非线性特征。研究表明,人脑在视觉皮层接收信息的过程与分层特征学习类似。虽然分层特征学习在深度学习之前就已存在,但面临梯度消失问题,导致性能较差。

Geoffrey Hinton 是将深度学习从边缘课题变成 Google 等网络巨头仰赖的核心技术的关键人物。早在高中时期,他就对大脑工作原理像全息图一样的观点着迷,并在后续求学和研究中不断探索神经网络,经过三十多年努力,深度学习成为热门课题。如今,Hinton 及其团队在互联网上大有名气,他为 Google 工作,使用深度学习技术改进语音识别、图像标记等在线工具,其他团队成员也在相关领域发挥重要作用。在剑桥大学学习期间,Hinton 关注科学家尚未真正理解的大脑神经细胞间复杂的相互联系以及学习计算方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

深度学习(1)核心概念

“深度学习”一词源于新的方法和策略,这些方法和策略旨在通过克服梯度消失的问题来生成这些深层的非线性特征层次,以便我们可以训练具有数十层非线性层次特征的体系结构。在2010年早期,有研究表明,结合GPUs和[激活函数](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#activation-function)提供更好的梯度流,足以在没有重大困难的情况下训练深层结构。从这里开始,人们对深入学习的兴趣与日俱增。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。虽然大多数其他处理顺序数据的算法只有最后10个时间步的内存,[长短时记忆](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#LSTM)[循环神经网络](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#recurrent-neural-networks)(由Sepp Hochreiter和J ü rgen-Schmidhuber在1997年发明)允许网络收集过去几百个时间步的活动,从而做出准确的预测。虽然LSTM网络在过去10年中大多被忽视,但自2013年以来,LSTM网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

深度学习(1)核心概念

在分层[特征学习](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#feature-learning)中,我们提取多层非线性特征并将其传递给一个分类器,该分类器将所有特征组合起来进行预测。我们感兴趣的是将这些非常深层次的非线性特征叠加起来,因为我们无法从几层中学习复杂的特性。从数学上可以看出,对于图像来说,单个图层的最佳特征是边缘和斑点,因为它们包含了我们可以从单个非线性变换中提取的大部分信息。为了生成包含更多信息的特征,我们不能直接对输入进行操作,但是我们需要再次转换我们的第一个特征(边缘和斑点),以获得包含更多信息的更复杂的特征,以区分类。有研究表明,人脑做的是完全相同的事情:在视觉皮层接收信息的第一层神经元对特定的边缘和斑点很敏感,而视觉管道下游的大脑区域则对更复杂的结构(如脸部)敏感。虽然分层特征学习在领域深度学习存在之前就被使用了,但是这些架构面临着诸如消失[梯度](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-history-training#stochastic-%E6%A2%AF%E5%BA%A6-descent)问题,其中梯度变得太小,无法为非常深的层提供学习信号,因此,与浅层学习算法(如支持向量机)相比,这些体系结构的性能较差。

Geoffrey Hinton 是这个人,一步步把“深度学习”从边缘课题变成Google等网络巨头仰赖的核心技术

王晨推荐早在1960年代,Geoffrey Hinton的高中时期,就有一个朋友告诉他,人脑的工作原理就像全息图一样。创建一个3D全息图,需要大量的记录入射光被物体多次反射的结果,然后将这些信息存储进一个庞大的数据库中。大脑储存信息的方式居然与全息图如此类似,大脑并非将记忆储存在一个特定的地方,而是在整个神经网络里传播。Hinton为此深深的着迷。对Hinton来说,这是他人生的关键,也是他成功的起点。“我非常兴奋,”他回忆到,“那是我第一次真正认识到大脑是如何工作的”。在高中时代谈话的鼓舞之下,Hinton在他的求学期间,在剑桥大学以及爱丁堡大学继续他的神经网络的探索。在80年代早期,他就参与了一个雄心勃勃的关于使用计算机的软硬件来模拟大脑的研究,这形成了早期的AI的一个分支,也就是我们现在所说的“深度学习”。三十多年的努力,深度学习已成为学术界炙手可热的课题。现如今,Hinton和他的深度学习小团队,包括纽约大学的Yann LeCun教授,蒙特利尔大学的Yoshua Bengio教授,在互联网上已然大有名气。作为多伦多大学的教授和研究员,Hinton也同时为Google工作,使用深度学习技术来改进语音识别,图像标记和其他在线工具。LeCun也在Facebook从事类似的工作。AI风靡全球,微软,IBM,百度和许多网络巨头都为之着迷。在剑桥大学的心理学专业的本科学习当中,Hinton发现,科学家们并没有真正理解大脑。人类大脑有数十亿个神经细胞,它们之间通过神经突触相互影响,形成极其复杂的相互联系。然而科学家们并不能解释这些具体的影响和联系。神经到底是如何进行学习以及计算的,对于Hinton,这些正是他所关心的问题。

Others are asking
深度学习是什么意思?
深度学习是一种源于新方法和策略的技术,旨在通过克服梯度消失问题来生成深层的非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。 深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为“深度”。神经网络可以用于监督学习、无监督学习、强化学习等。 自 2010 年早期,结合 GPUs 和激活函数提供更好的梯度流,足以在没有重大困难的情况下训练深层结构,人们对深度学习的兴趣与日俱增。自 2013 年以来,长短时记忆网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。
2024-12-24
机械学习和深度学习的关系
机械学习和深度学习的关系如下: 机器学习是指机器自动从资料中找一个公式,而深度学习是一种机器学习技能。深度学习基于类神经网络,具有非常大量参数的函数。在 AI 的范畴中,机器学习和深度学习都属于实现让机器展现智慧这一目标的方法和技术。
2024-12-19
chatGPT是基于什么深度学习的方法?
ChatGPT 是美国 OpenAI 公司开发的一款基于大型语言模型(Large Language Model,简称 LLM)的对话机器人。它基于深度学习的方法,其中深度学习是机器学习的一个子领域,简单理解就是采用像深度神经网络这样有深度的层次结构进行机器学习,其主要特点是具有更多的神经元,层次更多、连接方式更复杂,需要更庞大的计算能力加以支持,能够自动提取特征。
2024-12-08
chatGPT是基于什么深度学习的方法?
ChatGPT 是美国 OpenAI 公司开发的一款基于大型语言模型(Large Language Model,简称 LLM)的对话机器人。它基于深度学习的方法,其中深度学习是机器学习的一个子领域,简单理解就是采用像深度神经网络这样有深度的层次结构进行机器学习。其主要特点是具有更多的神经元,层次更多、连接方式更复杂,需要更庞大的计算能力加以支持,能够自动提取特征。
2024-12-08
AI是怎样进行深度学习的
AI 的深度学习是一种参照人脑神经网络和神经元的方法。神经网络具有很多层,所以称为“深度”。 深度学习中的神经网络可以用于多种学习方式,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习所使用的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,无需依赖循环神经网络或卷积神经网络。Transformer 比循环神经网络更适合处理文本的长距离依赖性。
2024-12-04
深度强化学习
深度强化学习是强化学习与深度学习技术相结合的领域。 其起源于 20 世纪 90 年代,特点是通过试错学习最优行为策略,以最大化累积奖励。 技术方面,起初基于策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA 是典型代表。随着深度学习兴起,深度神经网络与强化学习融合,产生了深度强化学习,如 AlphaGo 和 DQN 等就是显著成果。 深度强化学习的优势在于允许 Agent 在未知环境中自主探索和学习,无需人工明确指导,能够处理高维状态空间和连续动作空间,在游戏、机器人控制等领域有广泛应用潜力。 然而,深度强化学习也面临诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,尤其在应用于复杂多变的真实世界环境时。 在实现上,如 DQN 是通过将神经网络和 Qlearning 结合,用函数而不是 Q 表来表示动作价值,利用均方误差设计 Loss Function,像 Qlearning 一样利用四元组进行训练。
2024-11-30
我想创建一个帮助学生学习的智能体
以下是创建帮助学生学习的智能体的相关信息: 1. 智谱 BigModel 共学营第二期: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 参与课程至少需要有 token 体验资源包,获取资源包的三种方式: 新注册用户,注册即送 2000 万 Tokens 充值/购买多种模型的低价福利资源包,直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay 语言资源包:免费 GLM4Flash 语言模型/ 多模态资源包: 多模态资源包: 所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 共学营报名赠送资源包 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 2. 智能助产术教学法: 学习空间系统基于 QQ 群空间构建,由学生、智能苏格拉底和群功能组成。学习空间通过 QQ 服务器,与智慧大脑、数据管理、ChatGPT 服务器连接。 智能苏格拉底是苏格拉底的智能代理,它以苏格拉底的助产术教育理念,进行人机会话交流。根据学习发生机制,智能苏格拉底担任启动人机会话、引导学生追问、构建学习共同体等任务。 为避免人机单独会话可能导致的“知识讲述”问题,本研究构建了追问型学习共同体发展机制。 3. 画小二:如何写好提示词是创建智能体第一步,提供了一些儿童寓意故事,如《照亮屋子》《杀龙妙技》《不同看法》《志愿是当小丑》等。
2025-01-06
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
sd 学习教程
以下是关于系统学习 Stable Diffusion 提示词的教程: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,为您推荐以下学习资源: 1. SD 从入门到大佬: Nenly 同学的视频合集(点我看合集):https://space.bilibili.com/1 。 想入门 SD 的同学可以在安装完 SD 后,参考 0.SD 的安装:https://qa3dhma45mc.feishu.cn/wiki/Ouiyw6v04iTJlmklDCcc50Jenzh 。 可选的一些图片版教程: 。 2. 第一期:上班的你: 。 。 。 。 。 。 。 。 。
2025-01-06
Midjourney 学习教程
以下是学习 Midjourney 的教程: 1. 注册相关账号:注册 Discord 账号并加入 Midjourney 服务器,Midjourney 也有在线版本可直接使用。 2. 掌握提示词结构:了解 Prompt 的基本组成部分,如“主体”“媒介”“环境”等,学习构建有效的 Prompt 来生成理想图像。 3. 熟悉常用参数和命令:学习 Midjourney 的各种参数设置,如放大、细节等,掌握常用命令,如/imagine、/test 等。 4. 针对不同场景练习创作:尝试针对插画、游戏、框架等不同场景进行创作练习,通过实践提高 Prompt 编写和图像生成技巧。 5. 学习他人作品并模仿:观察学习其他用户的优秀作品,了解其 Prompt 技巧,通过模仿提高创作水平。 此外,还可以通过以下方式学习 Midjourney: 把 Midjourney 的官网说明书喂给 GPT,让其根据说明了解机制和结构,给出适合的提示词。 像案例中的二师兄一样,加入相关社群,如 Prompt battle 社群,打磨文生图提示词学习。 总的来说,系统学习 Prompt 编写技巧、熟悉 Midjourney 的功能,并通过大量实践创作,同时善于学习他人经验,是学习 Midjourney 的有效方法。但需注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-06
mj 学习教程
以下是一些关于 Midjourney(MJ)学习的教程资源: 理论学习方面: 生成式 AI 原理:李宏毅老师风格幽默风趣的课程,很好跟进。 AI 图原理:简单清晰的介绍 AI 生图。 实操方面: 喂饭级实操攻略: MJ 入门:15 分钟快速了解,MJ 的基础技巧,快速入门。 https://www.bilibili.com/video/BV1vm4y1B7gP/?spm_id_from=333.880.my_history.page.click&vd_source=afe0a1f0c730039635f99f5ee84c1276 https://www.bilibili.com/video/BV1ko4y1t7wr/?spm_id_from=333.880.my_history.page.click 新手学习手册和干货网站(必看):https://ciweicui.feishu.cn/docx/DPbidgdBeoNw55xKjO6c7ao3nbc?from=from_copylink MJ 官方学习手册(至少看 1 遍):https://docs.midjourney.com/ B 站·莱森 LysonOber 免费视频教程(基础操作必看):https://space.bilibili.com/630876766?spm_id_from=333.337.0.0 【腾讯文档】野菩萨 AI 课程(小红书@野菩萨)摄影范式:https://docs.qq.com/sheet/DSXRNUGJIQ0tMWkhu?tab=BB08J2 【腾讯文档】副本野菩萨 AI 课程(小红书@野菩萨)绘画范式:https://docs.qq.com/sheet/DSWlmdFJyVVZPR3VN?tab=y0u7ta 【腾讯文档】野菩萨 AI 课程(小红书@野菩萨)Niji 二次元范式:https://docs.qq.com/sheet/DSUxaRmprc0FrR25W?tab=c7lsa8 【腾讯文档】野菩萨 AI 课程(小红书@野菩萨)三维和抽象:https://docs.qq.com/sheet/DSUlaSHVXT1daaFlJ?tab=BB08J3 【腾讯文档】野菩萨 AI 课程(小红书@野菩萨)AI 产品制作与展现:https://docs.qq.com/sheet/DSW1jSFVZTER4Rnlq?tab=BB08J4 【腾讯文档】《野菩萨 AI 课程(小红书@野菩萨)电影范式》:https://docs.qq.com/sheet/DSXJKdmZ3WXhIQ2Vq?tab=BB08J5&scode=
2025-01-06
comfyui 学习教程
以下是一些关于 ComfyUI 的学习资源和推荐学习路径: 学习资料网站: ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户。网站:https://www.comfyuidoc.com/zh/ 优设网:有详细的入门教程,介绍了 ComfyUI 的特点、安装方法及生成图像等内容。教程地址:https://www.uisdc.com/comfyui3 知乎:有用户分享的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。教程地址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:有一系列涵盖从新手入门到精通各个阶段的视频教程。教程地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 共学快闪内容:包括 Stuart 风格迁移、红泥小火炉基础课程、大雨换背景图等众多课程和工作流相关内容。 推荐学习路径: 入门视频教程:学习三个 NENLY 出品的免费视频课程,包括“ComfyUI 入门教程”(https://www.bilibili.com/video/BV1D7421N7xN)、“ComfyUI 自定义节点的秘密”(https://www.bilibili.com/video/BV1pZ421b7t7)、“拆解 ComfyUI 工作流”(https://www.bilibili.com/video/BV1ab42187er/)。 理论宝典教程:学习 ZHO 出品的免费理论视频课程。 文生图实操:学习完上述视频课程后,可使用文生图工作流实际出图实操,工作流地址:https://openart.ai/workflows/lailai/textgeneratesimagesmvpworkflow/ChYNJiXHkZrjyvg1yL9f 内容由 AI 大模型生成,请仔细甄别。
2025-01-06