直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

深度强化学习

回答

深度强化学习是强化学习与深度学习技术相结合的领域。

其起源于 20 世纪 90 年代,特点是通过试错学习最优行为策略,以最大化累积奖励。

技术方面,起初基于策略搜索和价值函数优化等算法,如 Q-learning 和 SARSA 是典型代表。随着深度学习兴起,深度神经网络与强化学习融合,产生了深度强化学习,如 AlphaGo 和 DQN 等就是显著成果。

深度强化学习的优势在于允许 Agent 在未知环境中自主探索和学习,无需人工明确指导,能够处理高维状态空间和连续动作空间,在游戏、机器人控制等领域有广泛应用潜力。

然而,深度强化学习也面临诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,尤其在应用于复杂多变的真实世界环境时。

在实现上,如 DQN 是通过将神经网络和 Q-learning 结合,用函数而不是 Q 表来表示动作价值,利用均方误差设计 Loss Function,像 Q-learning 一样利用四元组进行训练。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI-Agent系列(一):智能体起源探究

强化学习(RL)领域关注的核心议题是:如何培养Agent通过与环境的互动进行自我学习,以在特定任务中累积最大的长期奖励。起初,基于RL-based Agent主要依托于策略搜索和价值函数优化等算法,Q-learning和SARSA便是其中的典型代表。随着深度学习技术的兴起,深度神经网络与强化学习的结合开辟了新的天地,这就是深度强化学习。这一突破性融合赋予了Agent从高维输入中学习复杂策略的能力,带来了诸如AlphaGo和DQN等一系列令人瞩目的成就。深度强化学习的优势在于,它允许Agent在未知的环境中自主探索和学习,无需依赖明确的人工指导。这种方法的自主性和适应性使其在游戏、机器人控制等众多领域都展现出广泛的应用潜力。然而,强化学习的道路并非一帆风顺。它面临着诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,特别是在将其应用于复杂多变的真实世界环境时更是如此。时间:20世纪90年代至今特点:通过试错学习最优行为策略,以最大化累积奖励技术:Q-learning,SARSA,深度强化学习(结合DNN和RL)优点:能够处理高维状态空间和连续动作空间缺点:样本效率低,训练时间长

AI-Agent系列(一):智能体起源探究

强化学习(RL)领域关注的核心议题是:如何培养Agent通过与环境的互动进行自我学习,以在特定任务中累积最大的长期奖励。起初,基于RL-based Agent主要依托于策略搜索和价值函数优化等算法,Q-learning和SARSA便是其中的典型代表。随着深度学习技术的兴起,深度神经网络与强化学习的结合开辟了新的天地,这就是深度强化学习。这一突破性融合赋予了Agent从高维输入中学习复杂策略的能力,带来了诸如AlphaGo和DQN等一系列令人瞩目的成就。深度强化学习的优势在于,它允许Agent在未知的环境中自主探索和学习,无需依赖明确的人工指导。这种方法的自主性和适应性使其在游戏、机器人控制等众多领域都展现出广泛的应用潜力。然而,强化学习的道路并非一帆风顺。它面临着诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,特别是在将其应用于复杂多变的真实世界环境时更是如此。时间:20世纪90年代至今特点:通过试错学习最优行为策略,以最大化累积奖励技术:Q-learning,SARSA,深度强化学习(结合DNN和RL)优点:能够处理高维状态空间和连续动作空间缺点:样本效率低,训练时间长

入门指南:强化学习

深度强化学习DQN在上面我们讲了在Q-learning算法中我们以矩阵的方式建立了一张存储每个状态下所有动作Q值的表格。表格中的每一个动作价值Q(s,a)表示在状态下选择动作然后继续遵循某一策略预期能够得到的期望回报。然而,这种用表格存储动作价值的做法只在环境的状态和动作都是离散的,并且空间都比较小的情况下适用,如果是状态或者动作数量非常大的时候,这种做法就不适用了。值函数近似(Function Approximation)的方法就是为了解决状态空间过大,通过用函数而不是Q表来表示Q(s,a)。其中w称为权重,也就是我们在神经网络里面需要训练收敛的值,在上面的Q-learning中我们的强化学习是训练Q表,在神经网络里面训练收敛的就是w值。通过神经网络和Q-learning结合就是DQN(Deep Q-Network)了。在Q-learning中我们更新Q表是利用每步的reward和当前Q表来迭代的,那么同样我们也可以用这种方法来设计我们的Loss Function:上面的公式其实就是一个均方误差,真实值与预测值之间的差的平方,和我们上面的Q-learning时序差分(temporal difference,TD)函数其实很像。有了上面的公式之后我们就可以像Q-learning一样利用四元组来训练我们的模型了。但是在一般的有监督学习中,假设训练数据是独立同分布的,我们每次训练神经网络的时候从训练数据中随机采样一个或若干个数据来进行梯度下降,随着学习的不断进行,每一个训练数据会被使用多次。

其他人在问
机械学习和深度学习的关系
机械学习和深度学习的关系如下: 机器学习是指机器自动从资料中找一个公式,而深度学习是一种机器学习技能。深度学习基于类神经网络,具有非常大量参数的函数。在 AI 的范畴中,机器学习和深度学习都属于实现让机器展现智慧这一目标的方法和技术。
2024-12-19
chatGPT是基于什么深度学习的方法?
ChatGPT 是美国 OpenAI 公司开发的一款基于大型语言模型(Large Language Model,简称 LLM)的对话机器人。它基于深度学习的方法,其中深度学习是机器学习的一个子领域,简单理解就是采用像深度神经网络这样有深度的层次结构进行机器学习,其主要特点是具有更多的神经元,层次更多、连接方式更复杂,需要更庞大的计算能力加以支持,能够自动提取特征。
2024-12-08
chatGPT是基于什么深度学习的方法?
ChatGPT 是美国 OpenAI 公司开发的一款基于大型语言模型(Large Language Model,简称 LLM)的对话机器人。它基于深度学习的方法,其中深度学习是机器学习的一个子领域,简单理解就是采用像深度神经网络这样有深度的层次结构进行机器学习。其主要特点是具有更多的神经元,层次更多、连接方式更复杂,需要更庞大的计算能力加以支持,能够自动提取特征。
2024-12-08
AI是怎样进行深度学习的
AI 的深度学习是一种参照人脑神经网络和神经元的方法。神经网络具有很多层,所以称为“深度”。 深度学习中的神经网络可以用于多种学习方式,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习所使用的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,无需依赖循环神经网络或卷积神经网络。Transformer 比循环神经网络更适合处理文本的长距离依赖性。
2024-12-04
深度学习
深度学习是一个源于新方法和策略的领域,旨在克服梯度消失问题以生成深层非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流以训练深层结构,此后人们对深度学习的兴趣日益增长。 深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。长短时记忆循环神经网络允许网络收集过去几百个时间步的活动以做出准确预测,自 2013 年以来其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 在分层特征学习中,提取多层非线性特征并传递给分类器进行预测。由于无法从几层中学习复杂特性,所以叠加深层次非线性特征。研究表明,人脑在视觉皮层接收信息的过程与分层特征学习类似。虽然分层特征学习在深度学习之前就已存在,但面临梯度消失问题,导致性能较差。 Geoffrey Hinton 是将深度学习从边缘课题变成 Google 等网络巨头仰赖的核心技术的关键人物。早在高中时期,他就对大脑工作原理像全息图一样的观点着迷,并在后续求学和研究中不断探索神经网络,经过三十多年努力,深度学习成为热门课题。如今,Hinton 及其团队在互联网上大有名气,他为 Google 工作,使用深度学习技术改进语音识别、图像标记等在线工具,其他团队成员也在相关领域发挥重要作用。在剑桥大学学习期间,Hinton 关注科学家尚未真正理解的大脑神经细胞间复杂的相互联系以及学习计算方式。
2024-11-30
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可利用周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础为零,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 缓存区:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法: 比如在状态 s1 上,根据 Q 值表选择行动,如发现向下行动 Q 值最大则向下走。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态的奖励 R,作为“Q 现实”,之前根据 Q 表得到的是“Q 估计”。通过公式更新 Q(s1,下)的值,公式为:。 算法流程:初始化 Q,for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s,for 时间步 t = 1> T do: ,End for,End for。启动程序训练 100 次后可较好进行游戏。
2024-11-21
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可在周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础薄弱,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此视频课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》动手学习概念并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 数据缓存:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法流程: 初始化 Q。 for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s。 for 时间步 t = 1> T do: End for。 End for。 例如,在当前智能体处于 s1 状态时,会在表中找最大 Q 值对应的行动。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态时的奖励 R,作为现实中 Q(s1,下)的值(即“Q 现实”),之前根据 Q 表得到的 Q(s1,下)是“Q 估计”。有了“Q 现实”和“Q 估计”,可按公式更新 Q(s1,下)的值。公式中,α是学习率,γ是对未来 reward 的衰减值。启动程序训练 100 次后可较好地进行游戏。
2024-11-21
AI绘画这么厉害了,那儿童还有必要学习素描课吗
即便 AI 绘画很厉害,儿童仍有必要学习素描课。手绘素描笔记有助于建立突触连接,将信息从短期记忆转化为长期记忆,让人成为更好的概念思考者。例如,在科学观察中,学生通过手绘能更好地学会观察,这个过程不可被替代。就学习而言,掌握新技能时应先进行动手、动脑、技术最小化的学习,不应一开始就依赖 AI。比如在记笔记时,手写比打字能让学生记住更多信息。此外,在一些课程设计中,如离谱村的 AI 课,通过巧妙的环节设置和老师的引导,能让孩子更好地学习和发挥想象。
2024-12-20
如何从零学习
以下是从零学习 AI 的步骤和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您想系统学习 Stable Diffusion 的提示词,可以参考以下步骤: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。
2024-12-20
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等 AI 生成工具。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-20
AI基础学习课程
以下是为新手提供的 AI 基础学习课程相关内容: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,可尝试使用各种产品创作作品,知识库中有很多实践后的作品和文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,还有以下具体的课程推荐: 【野菩萨】课程:预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。若想免费获得该课程,可参与 video battle,每期冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。 微软 AI 初学者入门课程:包括特定的机器学习云框架,如了解更多详情。深度学习背后的深层数学(Deep Mathematics)可参考 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/上获取。
2024-12-19
好长时间没接触AI了,大概有三四个月没学习了,你能快速指引我吗
以下是为您提供的快速指引,帮助您重新学习 AI: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 希望以上指引对您有所帮助,祝您在 AI 学习中取得进步!
2024-12-19
我是一位ai初学者,该如何选择学习的方向和材料
对于 AI 初学者,以下是一些选择学习方向和材料的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您偏向技术研究方向,需要学习的内容包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,需要学习的内容包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-19