直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

超融合架构与AI

回答

超融合架构与 AI 相关的知识如下:

在融合 RL(强化学习)与 LLM(大型语言模型)思想方面:

  • AI 本质涉及多种缩放规律(scaling law),当前较好的模型规模在 10 的 25 到 26 次方 FLOPs,算力是必要条件。
  • 需满足可扩展性(scalability)和通用性(generality)的架构,如 Transformer 在已知 token 空间符合部分条件,但在更通用场景存在不足。
  • 未来可能会利用用户数据源的缩放规律,对齐(alignment)问题存在缩放规律且可解决,数据瓶颈在文本模态上 2024 年可能出现,多模态数据引入可推迟 1 - 2 年。

在面向智能的架构方面:

  • 包括为 Machine Learning 优化的高性能芯片,如 Nvidia 的 H100 Tensor Core GPU 和 Google 的 TPU,内置多计算核心和高带宽内存。
  • 能完全发挥硬件效率的系统软件,如 Nvidia 推出的 CUDA。
  • 用于训练和推理的分布式计算框架,可跨多个节点扩展模型训练操作。
  • 数据和元数据管理系统,提供可靠、统一和可重复使用的管理通道。
  • 极低延迟的服务基础设施,支持快速执行基于实时数据和上下文相关的智能操作。
  • Machine Learning 持续集成平台(MLOps)、模型解释器、质保和可视化测试工具,可大规模监测、调试、优化模型和应用。
  • 封装了整个 Machine Learning 工作流的终端平台,抽象出全流程复杂性,易于使用。

在 Q*猜想方面:当前各界有很多相关文章或论文发表,推测可能通过 LLM 融合 RL 的方法实现,前期数据准备工作具有巨大挑战。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

“AI本质就是一堆scaling law..今天能看到最好的模型是10的25到26次方FLOPs这种规模。这个数量级接下来肯定还会持续增长,所以我认为算力是个必要条件,因为机器学习或者AI研究了七八十年,唯一work的东西其实是scaling Law,就是放大这几种生产要素。你需要一个同时满足scalability和generality这两点的架构,但今天其实很多架构已经不满足这两条了。transformer在已知的token space符合这两条,但放大到一个更通用的场景,也不太符合。数据也是一个生产要素,包括整个世界的数字化,和来自用户的数据。现在“吃”的是base model的scaling law,未来可能会去“吃”用户这个数据源的scaling law。因为其实alignment也有scaling law,它肯定是可以被解决的,只要你能找到对的数据。AI本质就是一堆scaling law。一个值得被scale up的架构是基础,这个架构首先得支持不断加入更多数据,然后数据才会真的成为瓶颈。我们现在说的数据瓶颈,从文本模态上,2024年就会遇到,但多模态数据的引入进来会把这个问题推迟1-2年。如果视频和多模态的卡点解决不了,那文本的数据瓶颈就会很关键。这点上其实我们也有些进展——如果限定了问题,比如数学或者写代码,数据是相对好生成的。通用的问题现在还没有完全的解法,但是存在一些方向可以去探索。统计模型没有什么问题。当next token prediction足够好的时候,它能够平衡创造性和事实性。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

为Machine Learning优化的高性能芯片,它们内置多计算核心和高带宽内存(HBM),可以高度并行化,快速执行矩阵乘法和浮点数学神经网络计算,例如Nvidia的H100 Tensor Core GPU还有Google的TPU;能够完全发挥硬件效率的系统软件,可以将计算编译到晶体管级别。Nvidia在2006年就推出的CUDA到现在也都保持着领先地位,CUDA是一个软件层,可以直接访问GPU的虚拟指令集,执行内核级别的并行计算;用于训练和推理的分布式计算框架(Distributed Computing Frameworks),可以有效地跨多个节点,扩展模型的训练操作;数据和元数据管理系统,为创建、管理、训练和预测数据而设计,提供了一个可靠、统一和可重复使用的管理通道。极低延迟的服务基础设施,使机器能够快速执行基于实时数据和上下文相关的智能操作;Machine Learning持续集成平台(MLOps),模型解释器,质保和可视化测试工具,可以大规模的监测,调试,优化模型和应用;封装了整个Machine Learning工作流的终端平台(End to End ML Platform),抽象出全流程的复杂性,易于使用。几乎所有的拥有大用户数据量的2.0架构公司,都有自己内部的3.0架构集成系统,Uber的Michelangelo平台就用来训练出行和订餐数据;Google的TFX则是面向公众提供的终端ML平台,还有很多初创公司在这个领域,例如Determined AI。总的来说,Infrastructure 3.0将释放AI/ML的潜力,并为人类智能系统的构建添砖加瓦。与前两代架构一样,虽然上一代基础设施的巨头早已入场,但每一次范式转移,都会有有新的项目、平台和公司出现,并挑战目前的在位者。

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

好吧..终于到它了...Q-star,先来看下去年底来自LeCun的两篇推文...当然,在当前各界,充斥着很多关于Q-star猜想的文章或者论文发表,但我猜想,结合本文核心要点内容所述,通往Q-star的路途也许真的是通过LLMs融合RL的方法来进行实现的,尽管这里面会有很多可想而知的大量、复杂前期数据准备工作,而这也是为super alignment做出的必要准备,正如在「中篇」向大家阐释的那样,要想实现对世界中存在着可用token表征的多种模式(pattern)的泛化映射结构,包括系统一、系统二中的直觉与推理pattern,RL中的AI4S的过程pattern,World Models/Sora中的物理世界模拟的pattern,可以想象这里面对于前期数据工程相关工作的挑战还是非常巨大的,但OpenAI一贯善于采用简单暴力的方法来解决,只不过直到现在为止,我们仍不得而知。

其他人在问
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-22
准备在小红书开通账号有什么AI工具可以帮助我运营么
以下是一些可以帮助您运营小红书账号的 AI 工具: 1. 小红书文案专家: 功能价值:见过多个爆款文案,只需输入网页或视频链接,就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 一期产品功能:可以提取任何链接中的标题和内容;按照小红书平台文案风格重新整理内容;加入 emoji 表情包让文案更有活力;为文案配图片。 二期计划功能:持续优化升级中,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 2. GPT4、WPS AI 和 chatPPT:可用于制作 PPT 等内容。 此外,还有一些小红书优质科技内容案例中的工具值得参考,如:
2024-12-22
检查文章是否是ai写的,有什么软件
以下是一些可以检查文章是否由 AI 写的软件: 1. Writer.com:提供免费的 AI 内容检测工具,使用时将文本粘贴到在线工具中点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 3. Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中,系统会分析并提供结果。 4. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析并提供详细报告。 5. Copyscape:主要用于检测网络剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 6. Grammarly:提供语法检查和剽窃检测功能,将文本粘贴到编辑器中选择剽窃检测功能,系统提供分析报告。 7. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究。上传文档或输入文本,系统分析并生成报告。 8. Originality.AI:专门设计用于检测 AI 生成内容,上传文档或输入文本,系统提供详细报告。 以下是一些 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,帮助改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-22
我能不能用AI做一个实时交流的社群
以下是关于您能否用 AI 做一个实时交流社群的相关信息: AI 音乐方面: 存在 AI 音乐共建者的社群。 使用方式:文档中可贴喜欢的音乐或投稿教程,定期组织音乐交流会,社群中可实时交流音乐相关创作作品和经验分享。 加入条件:至少有一首以上的 AI 音乐作品,添加 AAAAAAAJ 备注音乐。 近期活动:「在线音乐会」网友出题,现场生音乐(时间待定);「Reaction」收集 AI 音乐,大家一起欣赏,记录听到意想不到的好听的歌的反应(时间待定)。 有趣的音乐可贴在文档下方,持续收集中。 Inworld AI 方面: 使 NPC 能够自我学习和适应,具有情绪智能。 特点和功能: 实时语音:使用内置语音设置进行最小延迟,可配置角色的性别、年龄、音调和说话速度,或使用第三方服务创建自定义和克隆语音。 “Contextual Mesh”功能:定制 AI 非玩家角色(NPC)的行为和知识。 可配置的安全性:可配置 NPC 对话方式,适应不同年龄级别游戏。 知识:输入“个人知识”控制角色应知道或不应知道的信息,使用“共享知识”定义多个角色拥有的知识。 玩家档案:收集玩家信息,让 NPC 在互动时考虑。 关系:配置角色关系流动性,创建不同关系的角色。 第四堵墙:确保角色只从其世界中的知识获取信息,创建更沉浸的体验。 可与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,帮助品牌创建交互性强的 AI 角色,无需编码。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-22
超融合架构与AI
超融合架构与 AI 相关的知识如下: 在融合 RL 与 LLM 思想方面: AI 本质上是一堆 scaling law,当前能看到的最好模型规模在 10 的 25 到 26 次方 FLOPs 且规模还会持续增长,算力是必要条件。 需要同时满足 scalability 和 generality 的架构,如 transformer 在已知 token space 符合部分条件,但在更通用场景不太符合。 未来可能会利用用户数据源的 scaling law,alignment 也有 scaling law,只要找到对的数据就能解决。 一个值得被 scale up 的架构是基础,要支持不断加入更多数据,数据会成为瓶颈,如文本模态在 2024 年可能遇到,多模态数据引入可推迟 1 2 年。 在面向智能的架构方面: 包括为 Machine Learning 优化的高性能芯片,如 Nvidia 的 H100 Tensor Core GPU 和 Google 的 TPU,内置多计算核心和高带宽内存(HBM),可高度并行化执行神经网络计算。 能够完全发挥硬件效率的系统软件,如 Nvidia 推出的 CUDA 可直接访问 GPU 的虚拟指令集,执行内核级别的并行计算。 用于训练和推理的分布式计算框架,可有效地跨多个节点扩展模型的训练操作。 数据和元数据管理系统,为创建、管理、训练和预测数据而设计。 极低延迟的服务基础设施,使机器能够快速执行基于实时数据和上下文相关的智能操作。 Machine Learning 持续集成平台(MLOps)、模型解释器、质保和可视化测试工具,可大规模监测、调试、优化模型和应用。 封装了整个 Machine Learning 工作流的终端平台,抽象出全流程的复杂性,易于使用。 在 Q猜想方面:当前各界有很多关于 Qstar 猜想的文章或论文发表,结合核心要点内容,通往 Qstar 可能通过 LLMs 融合 RL 的方法实现,这需要大量复杂的前期数据准备工作,也是为 super alignment 做必要准备,前期数据工程相关工作挑战巨大,OpenAI 常采用简单暴力的方法解决,但目前情况未知。
2024-12-18
AI这个产品的基础架构是什么,in other words what powers AI
AI 的基础架构通常包括以下几个关键部分: 1. 语言生成:能够生成自然语言文本,以实现交流和表达。 2. 增长引擎:推动 AI 系统的不断发展和优化。 3. 广告定制和优化:根据用户需求和数据进行精准的广告定制和效果优化。 从技术层面来看,在最简单的情况下,使用 AI 做归纳推理时,输入一系列测量结果,然后让其预测尚未完成的测量结果。此时,AI 被视为黑匣子,重要的是其能否给出正确答案。但不可避免地,AI 中存在一些底层结构,使其最终会假设某种数据模型。 在实际应用中,对 AI 的监管是基于其在特定应用中可能产生的结果,具有很强的情境特异性。例如,并非将关键基础设施中的所有 AI 应用都归为高风险,像识别机器表面划痕这类应用风险可能相对较低。同样,用于在线服装零售商客户服务请求分类的 AI 聊天机器人,与作为医疗诊断过程一部分的类似应用,监管方式不应相同。
2024-12-11
能否整理AI AGENT的架构图
AI Agent 的架构主要包括以下部分: 1. 中间的“智能体”通常是 LLM(大语言模型)。 2. 为 LLM 增加的四个能力分别是工具、记忆、行动和规划。 工具:通过如 Langchain 框架将 LLM 与工具进行串接,例如给大模型提供数据库工具用于长期记忆。 记忆:让大模型能够记录重要信息。 规划:在大模型的 prompt 层进行目标拆解。 行动:每一步拆解后输出不同的固定格式 action 指令给工具作为输入。 AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,具备许多人类特有的属性。这些学科大多以人为研究对象,探索人类内在本质。但网络上对其的介绍往往晦涩难懂,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解和处理信息等内容常笼罩在神秘面纱之下。
2024-11-30
详细说明大语言模型的架构
大语言模型的架构主要包括以下几个部分: 1. 基础层:为大模型提供硬件支撑,如 A100、数据服务器等,以及数据支持。 2. 数据层:分为静态的知识库和动态的三方数据集。这里的数据层并非指用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。 3. 模型层:包括 LLm(大语言模型),一般使用 Transformer 算法实现,例如 GPT;还有多模态模型,如文生图、图生图等的模型,其训练所用的数据与 llm 不同,采用图文或声音等多模态的数据集。 4. 平台层:例如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 5. 表现层:也就是应用层,是用户实际看到和使用的地方。 此外,大语言模型的架构还具有以下特点: Transformer 架构:Transformer 是大语言模型训练架构,于 2017 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 不同类型:包括 encoderonly 模型,适用于自然语言理解任务;encoderdecoder 模型,同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容;decoderonly 模型,更擅长自然语言生成任务,目前熟知的众多 AI 助手基本都采用这种结构。 规模特点:预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,通常是 TB 级别的数据。参数也非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。
2024-11-29
请问有ai生成架构图的工具么
以下是一些可以生成架构图(包括逻辑视图、功能视图、部署视图)的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建多种类型图表。 7. PlantUML:文本到 UML 转换工具,通过编写描述生成序列图等,辅助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 请注意,这些工具并非都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否支持特定建模语言、是否与特定开发工具集成、偏好在线工具或桌面应用程序等。 此外,以下是一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)的生成设计工具,可根据设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
wifi和相机融合目标检测算法
图像融合是将两个或多个图像合成为一个新的图像,以获取比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中均有多种用途。 目标检测是计算机视觉领域的重要任务,旨在图像或视频中准确识别和定位特定对象。随着多模态数据的广泛应用,将不同模态信息融合能进一步提升目标检测的性能和鲁棒性。 图像融合和目标检测均是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。 图像融合的大致原理是将多个不同图像合并成新图像以获得更准确、全面的信息,相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测的大致原理是在图像中找到特定目标并进行定位和识别,相关算法有基于深度学习的目标检测算法(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)、基于传统计算机视觉技术的目标检测算法(如 HOG、SIFT、SURF 等)。
2024-12-10
数智技术与教学何以深度融合,从事实性知识学习,程序性知识学习,动机性参与三个角度说明
数智技术与教学的深度融合可以从以下三个角度进行说明: 事实性知识学习方面:数智技术能够以丰富多样的形式呈现事实性知识,如通过多媒体资源(如动画、视频、交互式图表等),使抽象的知识变得更加直观和生动,有助于学生更好地理解和记忆。同时,在线学习平台和教育软件可以提供大量的事实性知识资源,方便学生随时查阅和学习。 程序性知识学习方面:利用智能辅导系统和虚拟实验室等工具,为学生提供实践和练习的机会,帮助他们熟练掌握解决问题的步骤和方法。数智技术还能实时反馈学生的操作过程和结果,让他们及时发现错误并进行纠正,从而提高程序性知识的学习效果。 动机性参与方面:借助游戏化元素和社交学习平台,增加学习的趣味性和互动性,激发学生的学习兴趣和积极性。个性化的学习推荐和自适应学习系统能够根据学生的特点和需求提供定制化的学习内容,增强学生的学习动力和参与度。 总之,数智技术在事实性知识学习、程序性知识学习和动机性参与这三个角度都能发挥重要作用,促进教学的深度融合和优化。
2024-11-30
那个文生视频或图生视频的AI可以生成融合变化的效果
以下是关于文生视频或图生视频的 AI 生成融合变化效果的相关信息: 在人工智能技术迅速发展的当下,AI“词生卡”技术兴起,它将文字描述转化为视觉图像,重塑了创意产业格局。AI 的多模态输出能力已基本成型,包括文生文、文生图、文生码、文生视频、图生视频等,但大多在某个维度能力强,跨界融合还不够。 从生成方式分类,AI 视频生成包含: 1. 文生视频、图生视频,如 Runway、Pika labs、SD + Deforum、SD + Infinite zoom、SD + AnimateDiff、Warpfusion、Stability Animation 等。 一些热门产品如 Luma AI,其 Dream Machine 目前支持 txt2vid 文生视频和 img2vid 图生视频两种能力,8 月底最新发布的 Dream Machine 1.5 增强了提示词理解能力和视频生成能力。Luma AI 的 img2vid 生成效果在多方面表现出色,如生成时长较长、运动幅度大、能产生相机多角度位移、运动过程一致性保持较好、分辨率高且有效改善模糊感等。
2024-11-23
AI动物融合账号怎么做?
以下是关于制作 AI 动物融合账号的一些建议: 使用 GPT4 可以直接用自然语言画出效果较好的图,但费用较高。较好的免费替代工具是微软的 Copilot,不过其准确性比 GPT4 差。此外,也可以使用目前的 AI 绘画工具,但两幅图需要给到具体的提示词。下面以 GPT4 为例阐述制作教程。 工具:GPT4 对话过程: You:你作为一名非常优秀的抖音短视频创作博主,在抖音有 1000 万粉丝,有着丰富的短视频创作和运营经验,深得官方和用户的喜爱,我想创作一个生物融合成新物种的视频,例如猪和老鹰融合成一个新的物种,这个新物种非常霸气,阴暗风格,希望这个视频发布后能够获得上千万的播放、点赞,你觉得怎么样 ChatGPT:创作一个猪和老鹰融合成新物种的视频,确实是一个大胆而独特的想法,能够吸引人们的注意力。为了确保视频能够获得上千万的播放和点赞,这里有一些策略和创意建议: 1. 故事情节的构思 开始之前,构思一个吸引人的故事情节。这个故事可以是这个新物种的起源故事,它如何结合猪和老鹰的特点以及这种融合给它带来的独特能力和挑战。 考虑添加一些神秘或奇幻元素来增强故事的阴暗风格。 2. 视觉效果的设计 对于这种创意视频,强烈的视觉效果至关重要。可以使用 3D 建模和特效技术来创造出既霸气又具有阴暗风格的新物种形象。 高质量的视觉效果和流畅的动画能够吸引更多观众并提高视频的分享率。 3. 音乐和声音设计 配置适当的背景音乐和声效,以增强视频的氛围。选择能够激起观众情绪的音乐和声音效果,让视频更加引人入胜。 4. 社交媒体互动
2024-11-20
如何利用自动对齐技术,确保16位不同地点的人员录制的同一句口号音频同步且整齐,请推荐具有此功能的音频编辑工具、网站或AI工具,以便将这16段音频精确叠加并融合成一个协调一致的整体
以下是关于利用自动对齐技术确保 16 位不同地点人员录制的同一句口号音频同步且整齐的相关信息及工具推荐: 在音频编辑中,常见的步骤如下: 1. 选择合适的数字音频工作站(DAW),如 Studio One。上传 FLAC 无损格式的音频,只对融合部分进行 Inpaint 处理,保持其他音频信息不变,以避免音质问题。 2. 在 DAW 中对接音轨后,播放试听,并缩放波形图,检查波形是否正确对齐。若出现波形未对齐或播放时有咔哒声等问题,可能是在导出和处理过程中对音频施加了额外的效果器处理,如混响、限制器、压缩等,导致音频前后不一致,影响对接效果。因此,需要确保在不同的导出和处理步骤中,音频不受到额外的处理,或者在每次处理时保持相同的效果设置。 具有此功能的音频编辑工具和网站包括: 1. Studio One:可用于对齐拼接音轨,并进行后续的叠加额外音轨、调整音量和平衡等操作,以丰富音频的层次,注意叠加后各音轨的电平,避免过载或失衡。 2. Udio:具有混音功能,可对现有剪辑进行微妙或明显的变化。在提示框中有新的区域,通过滑块控制混音效果的强度。 此外,阿里的相关研究全面概述了大语言模型自动对齐的主要技术路径,将现有的自动对齐方法分为四大类:利用模型固有偏好实现对齐、通过模仿其他模型行为实现对齐、利用其他模型反馈实现对齐、通过环境交互获得对齐信号,并探讨了自动对齐背后的机理以及实现有效自动对齐的关键因素。但此研究主要针对大语言模型,对于音频对齐的直接应用可能有限。
2024-10-17