Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

能否整理AI AGENT的架构图

Answer

AI Agent 的架构主要包括以下部分:

  1. 中间的“智能体”通常是 LLM(大语言模型)。
  2. 为 LLM 增加的四个能力分别是工具、记忆、行动和规划。
    • 工具:通过如 Langchain 框架将 LLM 与工具进行串接,例如给大模型提供数据库工具用于长期记忆。
    • 记忆:让大模型能够记录重要信息。
    • 规划:在大模型的 prompt 层进行目标拆解。
    • 行动:每一步拆解后输出不同的固定格式 action 指令给工具作为输入。

AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,具备许多人类特有的属性。这些学科大多以人为研究对象,探索人类内在本质。但网络上对其的介绍往往晦涩难懂,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解和处理信息等内容常笼罩在神秘面纱之下。

Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。

AI-Agent系列(一):智能体起源探究

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading2]一、前言[content]本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

AI-Agent系列(一):智能体起源探究

更系列文章合集请访问:[蓝衣剑客-AIGC思维火花](https://waytoagi.feishu.cn/wiki/IYtowrzONiysdTkeA5QcEraxntc)[heading2]一、前言[content]本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

Others are asking
有哪些可以生成系统架构图的工具
以下是一些可以生成系统架构图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-01-17
是否有工具可以生成系统架构图
以下是一些可以生成系统架构图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-01-09
请问有ai生成架构图的工具么
以下是一些可以生成架构图(包括逻辑视图、功能视图、部署视图)的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建多种类型图表。 7. PlantUML:文本到 UML 转换工具,通过编写描述生成序列图等,辅助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 请注意,这些工具并非都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否支持特定建模语言、是否与特定开发工具集成、偏好在线工具或桌面应用程序等。 此外,以下是一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 5. 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)的生成设计工具,可根据设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。 以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
AI生成系统架构图 用什么
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-10-30
输入文字,生成组织架构图
以下是一些可以用于生成组织架构图的工具: 1. PlantUML:这是一个文本到 UML 的转换工具,通过编写描述性文本可自动生成序列图、用例图、类图等,能帮助创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,这些工具并非都基于 AI。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否需要支持特定建模语言、与特定开发工具集成、偏好在线工具或桌面应用程序等。 另外,增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成(包括图片、PPT、PDF)。在图片理解与生成场景中,在对话框输入诉求即可测试效果,比如生成常见的系统架构风格架构设计图,给出一张图片。通过简短的文本就能让 Bot 生成相应的图片,这背后是文本到图片或视频等其他格式内容的映射关系,在日常工作中使用便捷。当然,也可以根据图片提取里面的关键知识内容。
2024-09-03
Agents协作的系统架构图应该怎么画
以下是关于绘制 Agents 协作的系统架构图的一些参考信息: 首先,了解 Agent 的基本框架,即“Agent = LLM + 规划 + 记忆 + 工具使用”。其中大模型 LLM 扮演了 Agent 的“大脑”。 规划方面,主要包括子目标分解、反思与改进。子目标分解能将大型任务分解为较小可管理的子目标来处理复杂任务,反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 记忆分为短期记忆和长期记忆。短期记忆是将所有的上下文学习看成利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。 工具方面,不同的任务和场景需要选择合适的工具。 在生成式 AI 的人机协同中,分为 Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理)3 种产品设计模式,人与 AI 的协作流程有所差异。在 Agents 模式下,AI 完成大多数工作。 可以通过 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。例如,作为产品经理角色,可将产品功能设计需求通过 Agents 拆解成多个独立的任务,然后遵循不同的工作流,最后生成一份大致符合期望的输出结果,再进行修改完善。 此外,还可以参考一些实例探究,如提示 LLM 提供 100 个最新观察结果,并根据这些观测/陈述生成 3 个最重要的高层次问题,然后让 LLM 回答这些问题。规划和反应时要考虑主体之间的关系以及一个主体对另一个主体的观察,环境信息以树形结构呈现。
2024-08-18
我应该怎样开始学习AI
以下是新手开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 对于中学生来说: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
国内AI工具及相关网站有哪些?
以下是国内部分 AI 工具及相关网站: |排行|产品名|分类| |||| |15|墨刀 AI|设计工具| |16|无限画|图像生成| |17|autoDL 云服务租用|Agent| |18|百度 Chat|AI ChatBots| |19|360AI 搜索(没接 GA)|搜索| |20|AIbot ai 工具集|导航网站| |21|创客贴 AI|设计工具| |22|MasterGo|设计工具| |23|美图设计室|图像编辑| |24|魔搭社区阿里达摩院|AI 训练模型| |25|即时 AI 设计|设计工具| |26|Boardmix 博思 AI 白板|PPT| |27|百度飞桨 AI Studio|AI 学习| |28|字节扣子|| |29|提示工程指南|Prompts| |30|toolsdar|导航网站| |31|autoDL 云服务租用|| |32|AIbot ai 工具集|导航网站| |33|同花顺问财|金融| |34|魔搭社区阿里达摩院|AI 训练模型| |35|MasterGo|设计工具| |36|即时 AI 设计|设计工具| |37|百度 Chat|AI ChatBots| |38|创客贴 AI|设计工具| |39|即梦 AI(剪映)|其他视频生成| |40|可灵 AI|其他视频生成| |41|360 快剪辑|视频编辑| |42|Dify.ai|Agent| |43|Vast(算力)|| |44|提示工程指南|Prompts| |45|站酷海洛|资源| |46|toolsdar|导航网站| |47|百度飞桨 AI Studio|AI 学习| |48|Boardmix 博思 AI 白板|PPT| |49|讯飞听见|转录| |50|帆软战略|电商| |51|帆软数据|数据分析| |52|360 苏打办公|生产力| |53|标小智 LOGO 生成|图像生成| |54|edrawsoft|思维导图| |55|彩云|通用写作| |56|虎课网免费在线视频教程|AI 学习| |57|xmind|思维导图| |58|秘塔写作猫|通用写作| |59|Pixso AI|设计工具| |60|火山翻译|翻译| |61|aippt|PPT|
2025-01-30
可以做一个小红书私信自动回复的ai程序或者智能体吗
在理论上是可以创建一个小红书私信自动回复的 AI 程序或智能体的。但这需要一定的技术知识和开发能力。 首先,您需要确定回复的规则和逻辑,例如根据关键词、常见问题类型等来设定回复内容。 其次,选择适合的技术框架和工具,比如使用自然语言处理(NLP)技术和相关的库。 然后,进行数据收集和预处理,以训练模型能够准确理解和回复私信。 不过,需要注意的是,小红书的使用规则可能对自动回复有一定的限制和要求,您需要确保您的程序或智能体的使用符合其规定。
2025-01-30
有什么绘图AI工具
以下是一些常见的绘图 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建多种视图。 6. draw.io(现在称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 对于绘制 CAD 图,有以下 AI 工具和插件: 1. CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 2. Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 3. nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据输入自动生成 3D 模型。 5. 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 绘制示意图的工具还有: 1. Creately:在线绘图和协作平台,利用 AI 简化图表创建,适合绘制流程图等。 2. Whimsical:专注于用户体验和快速绘图,适合创建线框图等。 3. Miro:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录平台。 3. 选择模板:利用模板库选择适合需求的模板。 4. 添加内容:添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:需要团队协作可邀请成员一起编辑,完成后导出并分享图表。
2025-01-30
我是行政专员,零基础入门AI,如果帮忙自己提供工作效率和质量
对于行政专员零基础入门 AI 以提升工作效率和质量,以下是一些建议: 1. 了解 AI 的应用场景:AI 在很多领域都有显著的成果,如交通监控、银行账户欺诈检测、核融合控制、新药发现以及应对气候变化的技术等。它有潜力在您的工作中发挥作用,例如自动化一些重复性的任务。 2. 建立 AI 工作流:目前大多数人零碎地使用 AI 工具,未将其系统应用到工作场景中,导致整体效率提升不明显甚至下降。要避免像小明那样在挑选和切换工具上浪费时间,应建立一套完整、适合自己的 AI 工作方法论和流程。 3. 系统学习和实践:深入学习如何将 AI 工具与行政工作相结合,通过不断实践找到最适合自己工作的方法和工具。
2025-01-30
零基础怎么入门AI工具,行政专员一个
对于零基础的行政专员入门 AI 工具,以下是一些建议: 1. 明确学习目标:确定您希望通过 AI 工具解决哪些行政工作中的问题或提高哪些方面的效率。 2. 学习基础知识:了解 AI 的基本概念,例如机器学习、深度学习、自然语言处理等。可以通过在线课程、科普文章和视频来学习。 3. 选择适合的工具:根据行政工作的需求,选择一些易于上手的 AI 工具,如自动化文档处理工具、智能客服工具等。 4. 参加培训课程:报名参加专门针对零基础的 AI 入门培训课程,这些课程通常会有系统的教学和实践指导。 5. 实践操作:在实际工作中尝试使用所选的 AI 工具,积累经验。 6. 加入学习社区:参与 AI 学习的社区或论坛,与其他学习者交流经验,获取更多的学习资源和建议。 7. 持续学习和更新知识:AI 领域发展迅速,要保持学习的热情,不断跟进新的技术和工具。
2025-01-30
系统学习agent构建
以下是一些关于系统学习 Agent 构建的内容: 一些 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供环境感知和记忆功能,在处理高频工作场景表现出色。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。
2025-01-30
agent
智能体(Agent)在人工智能和计算机科学领域是一个非常重要的概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆(所有的上下文学习都是利用模型的短期记忆来学习)和长期记忆(为 Agents 提供长时间保留和回忆无限信息的能力,通常通过利用外部向量存储和快速检索来实现)。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 智能体可以根据其复杂性和功能分为以下几种类型: 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。例如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。例如金融交易智能体,根据不同市场条件选择最优的交易策略。 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。
2025-01-29
RAG与agent
RAG(RetrievalAugmented Generation,检索增强生成)是一种方法,例如在餐饮生活助手的应用中,它能根据用户需求从大规模餐饮数据集中检索出最合适的餐厅并提供相关信息和服务。实现餐饮生活助手的 RAG 实战,需要将餐饮数据集转化为 LangChain 可识别和操作的数据源,并定义 LLM 的代理,让其根据用户问题提取核心信息和条件,形成标准查询语句检索数据源并生成答案。 Agent 是大模型的一个重要概念,被认为是大模型未来的主要发展方向。它可以通过为 LLM 增加工具、记忆、行动、规划等能力来实现。目前行业里主要使用 LangChain 框架将 LLM 与工具串接。例如在 RAG 基础上,Agent 给大模型提供了更多工具,如长期记忆(数据库工具),还在 prompt 层和工具层完成规划和行动等逻辑设计。 在大模型请求中,最大的两个变量是 Messages 和 Tools,两者组合形成整个 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。RAG 可以是向量相似性检索,放在 system prompt 里或通过 tools 触发检索。Action 触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是通过更换 system prompt 和 tools 实现。
2025-01-28
购物推荐的aiagent 目前有好用的吗
以下是一些好用的购物推荐的 AI Agent: AutoGPT GUI:其 GUI 已开放 waitlist,可在 https://news.agpt.co/ 注册。 MULTI·ON plugin by MULTI·ON:今年 2 月开始使用,能在笔记本电脑上自动执行许多任务。现开发了 ChatGPT 插件,功能强大。链接:https://www.multion.ai/ ,演示:https://twitter.com/DivGarg9/status/1648394059483054081 。 BabyBeeAGI:由 Yohei 本人开发,有更强的任务管理等能力,但速度较慢,适合处理复杂任务。链接:https://replit.com/@YoheiNakajima/BabyBeeAGI?v=1 。 MiniAGI:基于 GPT3.5Turbo/4 的最小通用自主代理,保留简单实用功能,可执行多种任务,如订比萨。链接:https://github.com/muellerberndt/miniagi 。 此外,智谱的 AutoGLM 经过深度测试,展现出了较好的场景理解能力,如能准确区分“帮我买一杯咖啡”和“帮我买一包咖啡豆”并打开相应应用,但目前离好用还有一定距离,存在语音识别偏差、复杂界面操作稳定性待提升、只支持安卓等问题。 Cursor 虽然免费版只有 chat 功能,但其中的 Agent 功能只要给一个模糊指令,就会自动规划和解决问题。Cline 作为一个 AI 助手,能力有保障,长期霸榜 OpenRouter token 消耗榜,新版本还推出检查点功能。实际体验中,DeepSeekV3 和 Gemini 2.0 Flash Thinking 可作为不错的候选。
2025-01-26
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
新手小白,如何从0开始搭建AI Agent
对于新手小白从 0 开始搭建 AI Agent,以下是一些建议: 1. 规划阶段: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施阶段: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善阶段: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,还需要了解一些关于 AI Agent 的基本概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括 Chain(通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain)、Router(可以使用一些判定,甚至可以用 LLM 来判定,然后让 Agent 走向不同的 Chain)、Tool(Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索)。 常见的 AI Agent 有 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本,配套的图片,以及每日朋友圈)。这些 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系、反感度等,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-01-23
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
有没有现成的AI工具可以用来整理收藏的网页知识内容?
以下是一些可以用来整理收藏的网页知识内容的 AI 工具: 1. 月之暗面开发的:它具备读取网页内容的能力,并能在此基础上生成一定的内容。但它的阅读能力有一定限制,可能无法一次性处理大量资讯或某些网站的内容,可分批次提供资料。 2. Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划。
2025-01-27
如果我要整理多年收藏的网页变成不同科目的知识库,哪些AI工具最适合?
以下是一些适合将多年收藏的网页整理成不同科目的知识库的 AI 工具: 1. 工具入门篇(Prompt):现成好用的 Prompt。适用人群为完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白。文章链接:。简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 2. 工具入门篇(AI Agent):Agent 工具 小白的 Coze 之旅。适用人群为完全没有编程基础,但对 AI 已有一点概念的小白。文章链接:。简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它。 3. 工具入门篇(AI Pic):现在主流的 AI 绘图工具网站。适用人群为完全没接触过 AI 出图、只是听说过的小伙伴。文章链接:。简要说明:为纯粹的小白提供一个工具列表和扫盲。 4. 工具入门篇(AI Tools):数据工具 多维表格小白之旅。适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。文章链接:。简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 5. 工具入门篇(AI Code):编程工具 Cursor 的小白试用反馈。适用人群为 0 编程经验、觉得编程离我们很遥远的小白。文章链接:。简要说明:通过 AI 工具对编程祛魅,降低技术壁垒。 6. 工具入门篇(AI Music):音乐工具 Suno 的小白探索笔记。适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。文章链接:。简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。
2025-01-27
免费好用的Ai画布,可用于整理文档、思维导图
以下为您推荐一些免费好用的可用于整理文档、思维导图的 AI 画布工具: 1. Imagen 3: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。 2. FunBlocks AIFlow: FunBlocks 是一个效率工具集成平台,集成了 AI Graphics(绘图)、AI Mindmap(思维导图)、AI Slides(演示文稿)、AI Youtube Summarizer(视频总结)等等多款 AI 应用。 FunBlocks AIFlow 是平台内一款自由画布类工具,近期更新后变得更加好用了!输入探索主题后,AI 会将其自动拆解成不同模块,并支持每个节点的深度编辑(包括外观设置、节点组合、内容编辑、内容可视化、生成文章等)。而且!FunBlocks AIFlow 还支持自由节点上传链接、图片、视频、笔记、任务列表等多种内容形式,对于多模态交互需求非常友好。 3. Lucidchart: 简介:Lucidchart 是一个强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能: 拖放界面,易于使用。 支持团队协作和实时编辑。 丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 4. Microsoft Visio: 简介:Microsoft Visio 是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能: 集成 Office 365,方便与其他 Office 应用程序协同工作。 丰富的图表类型和模板。 支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 5. Diagrams.net: 简介:Diagrams.net 是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能: 支持本地和云存储(如 Google Drive、Dropbox)。 多种图形和模板,易于创建和分享图表。 可与多种第三方工具集成。 官网:https://www.diagrams.net/
2025-01-26
Ai画布,可用于整理文档、思维导图
以下是一些关于 AI 画布可用于整理文档、思维导图的相关信息: 自由画布类 AIGC 工具: Flowith 2.0:是一款出海应用,在具备 Refly 几乎所有功能的基础上,有很多独特设计。如知识库允许自行上传制作并发布,还能添加或购买他人的知识库;内容编辑器有多种模式;强化了 Agent 功能设计和对话模式;支持团队协作。 FunBlocks AIFlow:是 FunBlocks 效率工具集成平台内的一款自由画布类工具,输入探索主题后,AI 会自动拆解成不同模块,并支持每个节点的深度编辑,还支持多种内容形式的自由节点上传。 AI 画示意图的工具和步骤: 假设创建项目管理流程图,可使用 Lucidchart,步骤如下: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 绘制示意图的推荐 AI 工具和平台: Lucidchart:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图,具有拖放界面、支持团队协作和实时编辑、丰富模板库和自动布局功能等。官网: Microsoft Visio:专业的图表绘制工具,适用于复杂图表,AI 功能可帮助自动化布局和优化设计,集成 Office 365,有丰富图表类型和模板,支持自动化和数据驱动的图表更新。官网: Diagrams.net:免费开源的在线图表绘制工具,适用于各种示意图绘制,支持本地和云存储,有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:
2025-01-26
有没有辅助文献阅读,并能对文献内容进行整理的ai模型
以下是一些能够辅助文献阅读并对文献内容进行整理的 AI 模型和工具: 1. 智谱 AI 大模型开放平台: 场景介绍:大模型技术能快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间,帮助聚焦核心问题。其通用性可适应不同学科和复杂文本,提炼核心观点,为研究工作提速。 论文处理全景图:包括文献预处理和 LLM 内容处理。海量文献需转换为可供模型解析的文本格式,可借助平台工具完成文件内容提取。将文件内容自动化提取并结合大模型可进行批量分析或任务处理。 2. 利用 AI 写课题的步骤和建议: 确定课题主题,明确研究兴趣和目标,选择有价值和创新性的主题。 收集背景资料,使用学术搜索引擎和文献管理软件搜集相关文献和资料。 分析和总结信息,利用文本分析工具提取关键信息和主要观点。 生成大纲,使用写作助手生成包括引言、文献综述等部分的大纲。 撰写文献综述,利用工具确保内容准确完整。 构建方法论,根据需求设计研究方法。 数据分析,使用工具处理和解释数据。 撰写和编辑,利用写作工具撰写并检查语法和风格。 生成参考文献,使用文献管理工具生成正确格式。 审阅和修改,利用审阅工具检查逻辑性和一致性并修改。 提交前检查,确保原创性和格式调整。 3. 论文写作中常用的 AI 工具和平台: 文献管理和搜索:Zotero 可自动提取文献信息管理参考文献;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对等帮助提高语言质量;Quillbot 可重写和摘要优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭确保原创性。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应结合自身需求和写作风格,仔细甄别。
2025-01-25