基于知识库系统的人工智能包括以下方面:
专家系统:
FastGPT:
相关资源:
您可以为喜欢的主题写一个 AND-OR 树。同时,可参见Animals.ipynb了解实施正向推理和反向推理的专家系统示例。需注意,此例简单,规则达一定数量(约 200 多条)时才会有智能行为,规则复杂时可能难以牢记,基于知识的系统重要特点是能准确解释任何决定的做出过程。
符号人工智能的早期成就之一是专家系统——为充当某个有限问题领域的专家而设计的计算机系统。它们基于从一个或多个人类专家那里提取的知识库,并包含一个推理引擎,在此基础上进行推理。专家系统就像人类的推理系统一样,包含短期记忆和长期记忆。同样,在以知识为基础的系统中,我们会区分以下几个部分:问题记忆(Problem memory):包含与当前要解决的问题有关的知识,如病人的体温或血压、是否有炎症等。这种知识也被称为静态知识(static knowledge),因为它包含了快照信息,记录着我们在当前状态下对问题的了解——即所谓的问题状态(problem state)。知识库(Knowledge base):代表某个问题领域的长期知识。它是从人类专家那里人工提取的,不会因外部的咨询而改变。由于它允许我们从一个问题状态前往另一个问题状态,因此也被称为动态知识(dynamic knowledge)。推理引擎(Inference engine):协调在问题状态空间中搜索的整个过程,必要时向用户提问。它还负责找到适用于每个状态的正确规则。举例来说,下面这个专家系统是根据动物的物理特征来判断动物的:这种图称为AND-OR树,是一组产生式规则的图形表示。在从人类专家那里提取知识的早期阶段,绘制树形图非常有用。要在计算机中表示知识,使用规则更为方便:你可以注意到,规则左侧的每个条件和操作本质上都是对象-属性-值(OAV)三元组。工作记忆包含与当前要解决的问题相对应的OAV三元组。规则引擎会查找满足条件的规则,并应用这些规则,从而向工作记忆中添加另一个三元组。✅为你喜欢的主题写一个AND-OR树!
请参见[Animals.ipynb](https://github.com/microsoft/AI-For-Beginners/blob/main/lessons/2-Symbolic/Animals.ipynb),了解实施正向推理和反向推理的专家系统的示例。注:这个例子非常简单,只能让人了解专家系统的样子。一旦你开始创建这样一个系统,只有当规则达到一定数量(大约200多条)时,你才会注意到它的一些智能行为。在某些时候,规则会变得过于复杂,以至于你无法将所有规则都牢记在心,这时你可能会开始怀疑系统为什么会做出某些决定。不过,基于知识的系统的重要特点是,你总能准确解释任何决定是如何做出的。
更智能的问答:基于LLM技术,FastGPT可以理解自然语言并生成高质量的答案。更全面的信息:支持连接外部知识库,以获取更全面的信息。更易用的开发:可视化的工作流编排工具,方便用户创建复杂的问答场景。更快的上手速度:开箱即用的数据处理和模型调用功能,方便用户快速上手。总而言之,FastGPT是一个功能强大、易于使用的知识库问答系统,它可以帮助企业构建智能客服、知识库搜索、文档生成等应用。以下是一些关于FastGPT的其他资源:[FastGPT官网](http://fastgpt.xxlab.tech/)[FastGPT文档](https://doc.fastai.site/docs/intro/)[FastGPT GitHub仓库](https://github.com/labring/FastGPT)[FastGPT个人版知识库部署教程](https://juejin.cn/post/7310419610449526823)希望这些信息对您有所帮助。内容由AI大模型生成,请仔细甄别