SD 插件不兼容可能有多种情况和解决方法:
启用CFG修复插件之后,我们再次测试一下不同CFG值下的图片效果,可以发现生成的图片已经完全符合我们的文字提示词,而且即使CFG拉高到30,也没有发生任何的崩坏。当然,也不是说CFG值越高越好,经过挑选,这张CFG值为15时的图片是最令我满意的。在插件的高级选项中,还有一些模型可以选择,我接着又对比了一下CFG数值为30的情况下,不同的模型产生的效果。可以发现,也并不是所有的模型都适用于这张图,有的图片也产生了崩坏,所以需要经过一些测试来选择合适的模型。最后,我们将刚才筛选出的图片进行细化放大,就可以出图啦。总结一下,当生成图与提示词不太相符的时候,我们可以通过多刷图来找到符合自己需求的绘图。但是如果条件太多,始终达不到想到的效果,可以通过提高cfg值,并启用修复插件的方式来实现。有一个小问题是,在我的试验中发现,当开启插件并提高CFG值之后,画面会变得有些发黄,当然这个问题并不大,颜色的偏差我们可以利用ps做后续的调整,只要画面符合我们的要求就行。以上就是关于“动态阈值(CFG Scale修复)”插件的用法介绍,如果想要这个插件的话,可以添加我的公众号【白马与少年】,回复【SD】即可。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号微信扫一扫关注该公众号
作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-06-22 20:01原文网址:https://mp.weixin.qq.com/s/bAy1-CydHneam2IDM916XQ在画图的时候,当我们的提示词中有多个条件,sd生成的图像可能无法帮我们全部满足。比如我想要绘制这样一幅图片,关键词是:一个女孩、戴着贝雷帽、绿色夹克、黄色印花裙子,在森林里弹吉他,盲盒风格。使用的大模型是revAnimated,加“blindbox”lora。但是图片生成的时候,我们却发现,夹克变成了黄色,裙子变成了绿色,而且人物的身材比例是接近真实人物的,而不是我们想要的“chibi”盲盒风格。这个情况和我们的一个参数有关,那就是提示词引导系数,它关系到出图与我们文字的相关程度。我们使用“X/Y/Z脚本”来做一个横向对比,测试分别在5/10/15/20/25/30的CFG值下,画面的效果。可以看到,随着CFG值的提高,画面与提示词关联度更高,衣服和裙子的颜色与提示词相符了,但是问题是画面出现了崩坏。那有没有办法可以既增加CFG值,又让画面保持正常呢?答案是可以的,这就需要用到这款插件——dynamic-thresholding安装方式可以在扩展列表中搜索这个插件的名字,或者是将下载好的插件,放在这个路径文件夹下“……\sd-webui-aki-v4\extensions”。安装完成后,重启webUI,就可以看到这个插件了。点击打勾,就可以启用生效。
安装时间比较长,要耐心等待。安装好之后,打开SD文件目录下的这个文件夹。在地址栏输入“cmd”,然后回车。在打开的dos界面里面,将这行代码“python-m pip install insightface==0.7.3--user”粘贴进来,就会自动开始安装insightface。如果这个阶段出现错误,建议去下载使用最新的秋叶4.2整合包(6月23号更新),下载包我已经更新到了云盘里,后台回复【SD】就可以下载。安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。完成这些后,我们的Roop插件就可以正常使用了。这个插件主要适用于真实的人脸替换,所以对二次元之类的人物作用不大。我们选用一个真实系模型“realisticVisionV20”,关键词描述的是一个老人举着气球。得到了一张如下的照片。接下来启用ROOP插件,选择你想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但是图像会很模糊;数值越高人物越不像,但是图像会很清晰。这个就取决于你的需求了,我使用0.5测试一下。最下面还有一个放大算法,可以使用一个模型放大你的图像,基本就相当于高清修复。设置好后,点击生成。可以看到,人脸部分的像素是偏低的,有点模糊。但是没有关系,我们可以将这张图发送到“图生图”,开一个比较小的重绘幅度。然后使用controlnet中的tile模型进行重绘。换脸完成,像不像你们自行评价吧~如果想要这个插件的话,可以添加我的公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,另外,科学上网很重要。特别提醒,此插件谨慎使用,切勿触犯法律。