Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

markdown模式写提示词

Answer

以下是关于用 Markdown 模式写提示词的相关内容:

  • 平时写提示词用的更多的是 Markdown 语法,它简单且大语言模型能很好“理解”标题、列表、加粗强调等语法。
  • 例如专业书评人的提示词,要求以 Markdown 格式展示,每个要点单独一行,包括书名、ISBN、作者、出版社等。
  • 用 Lisp 构建 prompt 让 Claude 输出情绪营销语句,也可用一直倡导的 Markdown 格式,效果一样。但 GPT 等模型在卡片生成这步需要调整,不稳定,最好自定义 html/css 样式进行强约束。
  • 极简版输出(GPT o1 系列,需一步步思考推理)。
  • 可直接打开 Claude 首页发送提示词进行初始化后使用。
Content generated by AI large model, please carefully verify (powered by aily)

References

艾木:提示词编程|有必要用 Lisp 语言写提示词吗?

我们平时写提示词用的更多的是Markdown语法。Markdown语法很简单,并且大语言模型能很好的“理解”标题、列表、加粗强调等这些语法。用Markdown写提示词不是更直白吗?我们把这段Lisp提示词翻译成Markdown试试效果。Markdown版本与Lisp版本的提示词在语义上几乎是一致的。只是中间我多加了一句“一步步思考,严格按照大步骤以及处理流程执行。”因为不加这句,Claude还是不能保证会逐步执行。下面是Lisp版本提示词的输出效果。不知啥原因,我通过API调用Claude,输出效果很难达到李继刚文章中那种水平,用网页版也许会好一些。下面是Markdown版本的提示词输出的结果:对比下两者的效果,可以发现一个明显差异:在Lisp版本中,SVG图形的丰富度和表现力稳定地优于Markdown版本。这是个意外发现!我们会在后面再细细探讨。Markdown版本与Lisp版本提示词的另一个重要差异在执行过程,它会输出中间“思考”过程。小确幸这个函数的所有子步骤都被充分展开并且按顺序执行了。而且,由于大语言模型的自回归机制,前面步骤的输出,会自然地被作为上下文传入给后面的步骤。虽然在这个任务中,从文本处理后的输出结果上可能看不出太大差异,但在多数场景下,这样一步一步思考是会有正向收益的。除此之外,让大语言模型将“思考”过程外化出来后有一个很大的好处,就是你可以调试优化这个流程。从过程输出中你可以看到哪些步骤生成了有用的增量信息,哪些步骤是无用的。另外在调试过程中,你还可能从大语言模型的输出中发现新的灵感。然而,用Lisp版本的提示词,很难让大语言模型这么有条理地执行一个流程。

Prompts(提示词)

|标题|作者|分类|说明|prompt|链接地址|封面|SourceID||-|-|-|-|-|-|-|-||专业书评人||文本|从专业角度分析一本书|现在开始进行一项专业任务,要求专注和可靠,具体如下:<br>角色:专业书评人<br>任务:从资深和阅读爱好者角度评价'''内的图书,分别从书名、ISBN、作者、出版时、出版时间、推荐等级、推荐理由、图书评价、豆瓣评分、豆友评价、内容简介、作者图书、相关图书、参考链接、购买链接、图书价格、外文链接等要点进行展示,如果内容太多,分开进行<br><br>格式和内容要求:markdown格式展示,每个要点单独一行<br><br>示例如下:<br>- **书名**:××,要求中文书名和原书名都显示,无则不显示,格式:《中文书名》(原书名)<br>- **ISBN**:××,表示该书的ISBN,后面的内容都以此为准,不一致的都不要引用。<br>- **作者**:××,包括原名和翻译名<br>- **出版社**:××,内容要求与前面的ISBN号一致<br>- **|[李继刚等的prompt最佳实践](https://waytoagi.feishu.cn/wiki/JTjPweIUWiXjppkKGBwcu6QsnGd#BfX5dsWR9of3h4xjFWAcapyCnsd)||NzMyODM3NzI3ODcwMTQ4NjA4MTpyZWNMdHFndWpmOmEzZDAyZTUzM2U2N2VjNDQ2MjRkYWZmNmEwNzFkYTUwOjE6SDRzSUFBQUpib2dBL3dBQ0FQMy9lMzBEQUVPL3BxTUNBQUFB|

甲木:如何让Claude帮你来做「情绪价值营销」?

接下来,我们直接用Lisp来构建prompt,让Claude直接根据用户输入的领域和产品(也可自定义我们的产品特点),直接输出情绪营销语句~用Lisp这种编程语言是之前prompt圈李继刚刚哥带火了一波,使用下来更为凝练和简洁。当然,用我们一直倡导的Markdown的格式来写prompt的效果是一样的~[heading3]Lisp格式prompt(Claude专用)[heading3]Markdown格式prompt(GPT /国内大模型可用)@TODO待优化[content]备注:GPT等模型在卡片生成这步需要进行一些调整,不稳定。最好自定义html/css样式来进行强约束。[heading3]极简版输出(GPT o1系列,一步步思考推理)[heading2]打开Claude进行初始化[content]直接打开Claude首页,把上述提示词发送。初始化完成,接下来就可以直接进行使用~

Others are asking
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
怎么在coze的智能体总加入一个使用MARKDOWN编写的代码的prompt?
在 Coze 的智能体中加入使用 Markdown 编写的代码的 prompt 可以参考以下方法: 首先,了解相关的任务和目标,比如像实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为达到这一效果,大模型对话产品通常需要完成网页爬取、内容总结、二维码生成、卡片样式生成等关键步骤。 在编写 prompt 时,可以发现新的词生卡 Prompt 组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”“字体规范”“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。 对于刚入门的朋友,首推 LangGPT 结构化提示词,直观易懂,可以快速上手。对于想要进阶的用户,一方面可以继续选择 LangGPT,另一方面如有额外精力和好奇心,不妨尝试刚哥推崇的 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。但需要注意的是,真正重要的不是提示词的外在形式,而是内容是否与 AI 的“理解机制”相契合。同时,在实际应用中,还需要经过多次调试,并根据测试 bug 微调提示词,直至稳定运行。
2025-01-19
文本转markdown工具有哪些
以下是一些文本转 Markdown 的工具: ShowMeAI 周刊提到的好用的转换工具,但未具体指明。 XiaoHu.AI 日报中提到的 Zerox OCR 工具,它是开源的 GPT OCR 工具,支持将 PDF、DOCX 转换为 Markdown,可并发处理,还能选择特定页面及模型选项。详细介绍可参考:
2024-12-16
请将以下提示词改写为markdown格式:“请为我生成一个五子棋游戏的代码,其中,棋盘的大小是10*10”
以下是为您改写的 Markdown 格式的提示词: ``` 请为我生成一个五子棋游戏的代码,其中,棋盘的大小是 1010 ```
2024-12-06
写一个写俄罗斯方块的提示词(用markdown的形式)
以下是一个用 Markdown 形式写俄罗斯方块的提示词示例: 俄罗斯方块游戏提示词 游戏目标: 玩家需要通过操作方块的下落和旋转,使方块填满一行或多行,消除得分,尽可能地获得高分。 操作说明: 方向键:控制方块的左右移动。 上方向键:控制方块的旋转。 下方向键:加速方块下落。 方块类型: I 型方块 J 型方块 L 型方块 O 型方块 S 型方块 T 型方块 Z 型方块 得分规则: 消除一行得 10 分。 连续消除多行得分翻倍。 游戏结束条件: 方块堆积到顶部,无法再放置新的方块。 希望以上提示词对您有所帮助,您可以根据实际需求进行修改和完善。
2024-12-06
AI应用于信息展示除了以下这段还能写啥?人工智能对演示文稿、网页、微信公众号和Markdown工具都有影响,正重塑信息展示领域。例如,AI可以简化演示文稿设计布局的调整;通过AI能分析用户行为,优化网页内容和结构;在微信公众号利用AI实现个性化推送和智能回复,提升响应和互动质量。Markdown也可利用AI实现智能化编辑和检查。
以下是 AI 应用于信息展示的其他方面: 1. GPT4VAct 作为多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览,基于 AI 的能力、项目目标人群和服务内容类型,可实现未来互联网项目产品原型设计的自动化生成,使效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。 2. 在电影制作方面,可综合应用 AI 工具,如使用 ChatGPT 撰写脚本、分镜、人物设定和旁白,使用 Midjourney 生成静态分镜图片,使用 Runway 生成动态分镜片段,使用 AI 配音软件制作旁白。 3. 在写作方面,AI 可用于草拟各类初稿,如博客文章、论文、宣传材料、演讲、讲座等。还能帮助改进已有的文本,以不同风格创建草稿,激发作者创作出更好的作品,以及协助完成如写邮件、创建销售模板、提供商业计划下一步等任务。
2024-08-15
论文撰写的提示词
以下是关于论文撰写提示词的相关内容: 1. 通用原则: 目标明确:确保每一步的目标清晰,AI 需要明确指导以产生相关和有价值的输出。 逻辑性:在所有提示策略中,逻辑性是关键,清晰、结构化的提示有助于 AI 更有效地生成输出。 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按清晰步骤进行至关重要。 考虑变量:在某些情境中尤为重要,需考虑可能影响结果的所有因素。 2. 实验示例: 运用 CoD 将文章做摘要的实验,通过 GPT 的五轮输出,以中英文两种方式撰写提示词,个人观点认为英文提示词加上中文输出的方式效果较好,密度等级 4 的结果较让人满意。 3. 学术场景数据处理: 论文内容总结:大模型结合有效的提示词可迅速总结概括文档,节省时间,如 GLM4Plus 结合良好的提示词能帮助学生快速总结论文内容。 论文内容翻译:大模型可弥补翻译软件的不足,帮助学生快速翻译论文内容,如 GLM 结合良好的提示词能提高论文阅读效率。 论文内容扩写润色:可将论文内容转化为社交媒体的科普内容,精心设计的润色提示词能根据特定场景调整,生成多样化润色结果,如针对小红书使用场景调整提示词。 4. PromptAgent 相关: 通过将 PromptAgent 应用于涵盖三个实用且不同领域的 12 个任务,能够发现有生产力的专家级提示词。PromptAgent 从初始人工编写的提示词和小组训练样本开始,不仅提高了初始人类提示词的性能,还超越了强大的 ChainofThought 和近期的提示词优化基线。大量定性结果突显了优化提示词的专家级方面,随着更强大 LLM 的出现,专家级的提示词引导将引领提示词工程的下一个时代,PromptAgent 站在了开创性的步骤上。
2025-02-21
如何修改提示词
以下是关于修改提示词的一些方法和要点: 在 Midjourney 官方用户端: 点击提示栏右端的设置图标,可以更改提示词的固定设置,包括图像大小(通过移动光标调整横竖屏和常见比例)、模式(在标准模式和原始模式之间切换)、版本(选择使用的 MidJourney 版本)、个性化(开启后自动应用最新代码设置)、美学(如风格化、奇异度、多样性的数值调整)以及更多选项(如速度选择放松、快速或极速模式)。 对于 Claude2: 优化提示词类似于进行一系列实验。进行测试,解释结果,然后根据结果调整变量(提示词或输入)。 当 Claude2 测试失败,尝试确定失败原因,调整提示词,例如更明确地编写规则或添加新规则,通过添加示例和规范输出展示如何正确处理,在某一类型输入表现良好时尝试其他输入类型,确保尝试极端情况,添加规则和示例直至在代表性输入集合上取得良好表现,建议进行“保留测试”。 在 SD 新手入门中: 根据想画的内容写出提示词,多个提示词之间使用英文半角逗号“,”分隔。 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后,大致顺序为:(画面质量提示词)、(画面主题内容)(风格)、(相关艺术家)、(其他细节)。 每个词语在模型中的自带权重可能不同,训练集中较多出现的关键词输入一个就能极大影响画面,反之输入多个相关词汇可能影响有限。提示词顺序很重要,越靠后权重越低。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,例如“”在提示词中使用字面意义上的括号字符。
2025-02-21
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-02-21
deekseek生成助手提示词的指令
以下是关于 DeepSeek 生成助手提示词的相关内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 如果不知道如何表达,还是可以套用框架指令 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型 修正方案 示例对比 宽泛需求:添加维度约束,原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 主观表述:量化标准,原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证 七、效能监测指标 1. 首次响应准确率:目标>75% 2. 多轮对话效率:问题解决平均轮次<3 3. 复杂任务分解:支持 5 级子任务嵌套 此外,还有关于利用 DeepSeek 生成小红书爆款单词视频的相关内容: 1. 生成单词 开始:输入单词主题、图片风格、单词数量。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,这样 deepseek 就可以为用户输出指定数量的几个单词,以数组方式输出。 2. 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 3. 技能:输出关联英语单词,当用户输入主题时,分析主题内涵,运用专业知识,输出指定数量个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 4. 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。
2025-02-21
如何使用ai提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 提示词的定义和输入语言: 提示词用于描绘您想要的画面。 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 对使用提示词的认识: 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
2025-02-21
Prompt 提示词
以下是关于 Prompt 提示词的全面介绍: 一、如何编写提示词 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解任务主题和类型。 8. 测试和调整:根据生成结果检查并调整。 二、如何润色或优化 Prompt 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt。 7. 参考优秀案例:研究有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法并根据效果反馈优化。 三、星流一站式 AI 设计工具中的 Prompt 输入框 1. 提示词用于描绘画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用后可扩展提示词,更生动描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可点击官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词:点击齿轮按钮弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
传统软件行业融合AI的商业模式
传统软件行业融合 AI 的商业模式具有多种可能性和变革方向: 1. “AI 原生”模式:基于 AI 的能力再造商业模式,而非套用现有流程。 2. To AI 的商业模式:包括模型市场、合成数据、模型工程平台、模型安全等方面。 3. 基于国产芯片的软硬件联合优化,固件生态存在明确机会。 4. 端上智能有望成为全天候硬件 24x7 收集数据,具有较大想象空间。 5. 对于 SaaS 生态的影响: 认知架构带来巨大工程挑战,将模型基础能力转化为成熟可靠的端到端解决方案可能比想象中复杂。 可能引发业务模式全面变革,如从工程、产品和设计部门的瀑布式开发转变为敏捷开发和 A/B 测试,市场策略从自上而下的企业销售转向自下而上的产品驱动增长,商业模式从高价格销售转向基于使用的定价模式。 知名投资机构 Nfx 分析指出,AI 正在强制逆转 SaaS 从“软件即服务”转变为“服务即软件”,软件既能组织任务也能执行任务,传统劳动力市场最终将和软件融合成为新市场。降低企业在知识工作者上的支出,提高在软件市场的支出。企业组织中提供 AI 劳动力的产品有“AI 同事(雇佣)”等形式。
2025-02-21
AI产业商业模式
目前 AI 产业的商业模式仍在不断探索和发展中。 阻碍 AI 发展的因素包括产品体验的颠覆性和完成度不足、技术门槛相对较低以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新,且主流修图产品也在引入 AI 功能,新应用难以脱颖而出。妙鸭是一个特例,其“先试用后付费”策略和 9.9 元定价吸引用户,且背靠大厂有资源优势,但市场空间和后续发展需观察。 传统移动互联网时代成熟的 APP 商业模式是免费吸引用户,再通过广告等方式间接收入,但当前阶段可能不再适用于 AI 应用,ToC 创业公司早期需敢于向用户收费。 Bret Taylor 认为做 AI 生意像咖啡产业,训练基础大模型如同卖咖啡豆,利润受限;开发 AI 应用如同在机场卖拿铁,能按需求定价,利润空间更大。 “AI 原生”是基于 AI 的能力再造商业模式,而非套用现有流程。To AI 的商业模式可能包括模型市场、合成数据、模型工程平台、模型安全等。 未来可能会出现全新的商业模式和创新打法。
2025-02-21
AI商业模式
以下是关于 AI 商业模式的相关内容: 1. To AI 的商业模式可能更确定的方面包括:模型市场、合成数据、模型工程平台、模型安全。 2. 基于国产芯片的软硬件联合优化 固件生态是明确的机会。 3. 端上智能目前最大的想象空间是成为全天候硬件 24x7 收集数据。 Character.ai 覆盖了模型的研发、数据、应用等整个价值链,其商业模式注重在整个价值链上积累数据,并利用数据来不断优化用户体验,这种模式能够为公司带来持续的竞争优势和壁垒,从而在市场上获得更大的份额。 目前 AI 行业发展存在一些阻碍,如产品体验的颠覆性和完成度不足、技术门槛相对较低,以及商业模式尚未明确。例如,AI 修图新应用与移动互联网时代的“美图秀秀”相比,缺乏颠覆性创新。妙鸭这款产品在 2024 年凭借独特的产品功能和用户体验,收获了大量用户的关注和使用,其“先试用后付费”的策略和 9.9 元的定价具有吸引力,且背靠互联网大厂具备资源优势,但市场空间和后续发展潜力仍需观察。 相较 AI 类应用,传统移动互联网时代 APP 的商业模式是通过免费吸引用户,再通过广告等方式实现间接收入,但在当前阶段,这种模式或许不再适用于 AI 应用,To C 创业公司在产品发布早期阶段需做好向用户收费的准备。未来可能会出现全新的商业模式和创新打法。 此外,“AI 原生”是基于 AI 的能力来再造商业模式,而非用 AI 套用现有流程。
2025-02-21
coze的智能体都是单用户模式,如何适配区分不同用户?
Coze 的智能体在适配区分不同用户方面,主要通过以下方式: 1. 角色定义:分为超级管理员和普通用户。超级管理员拥有管理整个系统的最高权限,负责项目的正常运作和维护。普通用户没有项目配置的权限也无法进入管理后台页。 2. 配置模式: 模式 A:Zion 默认智能体。选择此模式将直接使用 Zion 在 Coze 平台预配置的官方智能体,适用于测试。系统会自动填充相关信息,预设头像与昵称。若后续想自定义修改智能体的各种收费模式、前端展示,可在“管理后台”进行修改。 模式 B:用户自己的 Coze 智能体。选择此模式需要在“管理后台”页自行配置在 Coze 平台上获取的 Bot ID、OAuth 应用 ID 以及一对公私钥。 3. 数据库方面:数据库是 Coze 用来长久存放用户自己生成的数据的功能,单用户模式是自己记录自己的数据,多用户模式则相当于大家一起维护一份数据。在记账管家的应用中,需要注意区分单用户和多用户模式,避免用户互相编辑对方的数据。
2025-02-20
开源模型的MIT模式、Apache、GPL、BSD模式的模型案例有哪些?
目前开源模型的 MIT 模式、Apache、GPL、BSD 模式的具体案例众多且不断更新。MIT 模式的开源模型如 TensorFlow Lite;Apache 模式的有 MXNet;GPL 模式的像 Gnuplot;BSD 模式的例如 OpenCV 等。但请注意,这只是其中的一部分,实际情况可能会有所变化。
2025-02-14
开源模型的MIT模式、Apache、GPL、BSD模式的定义和区别
MIT 模式:这是一种相对宽松的开源许可模式。允许使用者对软件进行修改、再发布,并且几乎没有限制,只要求在再发布时保留原版权声明和许可声明。 Apache 模式:提供了较为宽松的使用条件,允许修改和再发布代码,但要求在修改后的文件中明确注明修改信息。同时,还包含一些专利相关的条款。 GPL 模式:具有较强的传染性和约束性。如果基于 GPL 许可的代码进行修改和再发布,修改后的代码也必须以 GPL 许可发布,以保证代码的开源性和可共享性。 BSD 模式:也是一种较为宽松的许可模式,允许使用者自由地修改和再发布代码,通常只要求保留原版权声明。 总的来说,这些开源许可模式在对使用者的限制和要求上有所不同,您在选择使用开源模型时,需要根据具体需求和项目情况来确定适合的许可模式。
2025-02-14