直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

qwen大语言模型有视觉模式吗?

回答

Qwen 大语言模型具有视觉模式。以下是相关信息:

  • 有博主称 Qwen-VL 已迁移到 ComfyUI 中,它支持本地图像、上下文窗口多轮对话,支持 PLUS 和 MAX 双视觉模型,支持百万像素、任意规格图像,具有超强细节和文字识别能力,在开源领域表现出色,中文能力突出,目前 API 免费开放。
  • 关于部署 Qwen 大语言模型,如在 Windows 电脑上,可点击 win+R,输入 cmd 回车;在 Mac 电脑上,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序,然后复制相关命令行粘贴回车进行下载。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

爆肝博主 ZHO-绘画

[title]爆肝博主ZHO[heading1]更新记录:[heading2]1月30日Qwen-VL[15【击败GPT4V?我把Qwen-VL迁移到ComfyUI中了!- -Zho- |小红书-你的生活指南】😆 kQBVB2cSgsCwXcT 😆](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)[http://xhslink.com/NhC33A](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)【Zho】开源最强视觉模型?Qwen-VL in ComfyUI已上线!1⃣支持本地图像、上下文窗口多轮对话2⃣支持PLUS & MAX双视觉模型3⃣支持百万像素、任意规格图像4⃣超强细节、文字识别能力对比下来应该是开源领域最好的视觉模型了,中文能力突出,目前API免费开放!

爆肝博主 ZHO

[title]爆肝博主ZHO[heading1]更新记录:[heading2]1月30日Qwen-VL[15【击败GPT4V?我把Qwen-VL迁移到ComfyUI中了!- -Zho- |小红书-你的生活指南】😆 kQBVB2cSgsCwXcT 😆](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)[http://xhslink.com/NhC33A](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)【Zho】开源最强视觉模型?Qwen-VL in ComfyUI已上线!1⃣支持本地图像、上下文窗口多轮对话2⃣支持PLUS & MAX双视觉模型3⃣支持百万像素、任意规格图像4⃣超强细节、文字识别能力对比下来应该是开源领域最好的视觉模型了,中文能力突出,目前API免费开放!

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

其他人在问
docker部署qwen
以下是关于 Docker 部署相关问题的综合回答: 容器编排模板: 容器编排模板是一种配置文件,用于在 Docker 中部署和管理多个容器,可一键部署复杂环境,无需手动配置细节,如配置 COW 组件与微信和极简未来平台交互。 使用 Docker 部署 COW 组件的原因: Docker 提供隔离运行环境,确保应用在任何环境稳定运行,简化安装和配置过程,保证环境一致,便于管理和维护。 配置多个前缀触发机器人回复的原因: 配置如“bot”、“@bot”等多个前缀,能确保机器人只在特定情况回复,避免群聊或私聊中频繁干扰,提高响应准确性和用户体验。 扫码登录失败的解决办法: 1. 重启 Docker 容器:在宝塔面板中找到对应容器,点击“重启”。 2. 检查网络连接:确保服务器和微信客户端能正常访问互联网。 3. 重新扫描二维码:等待容器重启后,重新扫描日志中生成的二维码。 费用相关: 使用 AI 微信聊天机器人的费用实际上不高,极简未来平台按使用量收费,对一般用户费用相对低廉,充值少量费用通常可用很长时间,且平台提供每天签到免费领积分福利,进一步降低使用成本。使用极简未来平台创建 AI 机器人的具体费用未明确给出。
2024-10-20
什么是加载别人训练的qwen模型?
加载别人训练的 qwen 模型通常涉及以下步骤: 1. 对于直接调用千问的某一个大模型,如“qwenmax”模型,在 COW 中需要更改 key 和 model。在 /root/chatgptonwechat/文件夹下,打开 config.json 文件进行更改,并添加"dashscope_api_key"。获取 key 可参考视频教程或图文教程。同时,需要“实名认证”后,这些 key 才可以正常使用,若对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,可能是未实名认证,可点击去,或查看自己是否已认证。 2. 部署大语言模型时,如下载 qwen2:0.5b 模型,对于不同的电脑系统操作有所不同。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。之后复制相关命令行并粘贴回车,等待自动下载完成。 3. 对于 Ollama 大模型部分,为避免没下载大模型带来的报错,需要先下载 ollama,网站:网站中复制代码,然后像特定操作一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键粘贴刚才的代码,等待下载即可。
2024-10-01
什么是qwen模型?
Qwen(通义千问)是由阿里巴巴推出的大模型。 Qwen 具有以下特点和成就: 1. 是国内唯一出现在 OpenAI 视野里,可以参与国际竞争的国产大模型。 2. 多次冲进 LMSys 榜单,得分不断提高。 3. 开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用,尤其在企业级方面。 4. Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。 5. 除英语和中文外,还接受过另外 27 种语言的数据训练。 6. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。 7. 增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct)。 8. 在权威模型测评榜单 OpenCompass 中,Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,Qwen272B 整体性能相比 Qwen1.5110B 又取得大幅提升,在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中获十几项世界冠军,超过美国的 Llama3。
2024-10-01
怎么使用qwen2
以下是关于 Qwen2 的相关信息: 1. 性能表现:Qwen 2 开源了,其模型性能超越目前所有开源模型和国内闭源模型。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,刚开源的 Qwen272B 相比 Qwen1.5110B 整体性能大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 2. 训练与微调:大规模预训练后,通义千问团队对模型进行精细微调,提升了代码、数学、推理、指令遵循、多语言理解等能力,还让模型学会对齐人类价值观。微调过程遵循使训练规模化并减少人工标注的原则,探索了多种自动方法获取高质量数据,结合了有监督微调、反馈模型训练以及在线 DPO 等方法,采用在线模型合并方法减少对齐税。不久后将推出 Qwen2 的技术报告。 3. 特点:Qwen2 有 5 种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。除英语和中文外,还接受过另外 27 种语言的数据训练,在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct)。 4. 体验与下载:Qwen2 系列已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。同时,Qwen272binstruct 模型已上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址为。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 5. 开源社区影响力:Qwen 系列模型正在全球爆火,近一个月内总下载量翻倍,已突破 1600 万次。海内外开源社区已经出现了超过 1500 款基于 Qwen 二次开发的模型和应用。自今年 2 月 Qwen1.5 发布前后,就有大量开发者催更 Qwen2。6 月 7 日晚上 24 点左右 Qwen2 上线后,多个重要的开源生态伙伴火速宣布支持 Qwen2。
2024-10-01
gpt4o视觉模型
GPT4o 是 OpenAI 推出的模型。开发人员现在可在 API 中将其作为文本和视觉模型进行访问。与 GPT4 Turbo 相比,具有速度快 2 倍、价格减半、速率限制高出 5 倍的优势。未来几周计划向 API 中的一小群受信任的合作伙伴推出对其新音频和视频功能的支持。 GPT4o(“o”代表“omni”)是迈向更自然人机交互的一步,能接受文本、音频和图像的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它在 232 毫秒内可响应音频输入,平均为 320 毫秒,与人类响应时间相似。在英语文本和代码上的 GPT4 Turbo 性能相匹配,在非英语语言的文本上有显著改进,在 API 中更快且便宜 50%,在视觉和音频理解方面表现出色。 在 GPT4o 之前,语音模式由三个独立模型组成的管道实现,存在信息丢失等问题。而 GPT4o 是在文本、视觉和音频上端到端训练的新模型,所有输入和输出都由同一个神经网络处理,但对其能做什么及局限性仍在探索。
2024-11-14
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
AI 辅助文案创作与视觉设计
以下是关于 AI 辅助文案创作与视觉设计的相关内容: 视觉设计: 在名片设计的最后阶段——视觉设计中,核心是将名片文案转化为精美的可视化样式。考虑到用户模块文案长度差异,采用前端网页代码构建样式框架比直接文生图兼容性更好。Claude Artifacts 功能在网页布局设计和前端开发方面表现出色,能自动生成代码并提供实时预览效果。通过连续对话验证其能生成符合审美要求的社交名片,证明完全依赖 AI 完成视觉设计可行。若能通过一段提示词让 AI 稳定输出预期结果,还可省去单独工程化处理,降低应用开发复杂度,引入随机样式提升用户体验。 文案创作: 在制作《AI 你·南京》AIGC 城市宣传 MV 时,一开始打算用旁白朗诵方式,对文案要求高。直接让 GPT 写文案结果平淡,需更具体提需求。利用 360 浏览器字幕提取功能捕捉《爱我中华》视频文案,让 kimi 和 gpt 分析学习,对比两者结果,kimi 在中文理解和写作能力上更突出。完成文案分析后让 AI 按风格写作,整合调整,使文案更顺口,还可让 AI 输出简单画面分镜。 生成 Logo 的 AI 产品: 以下是一些生成 Logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,根据用户品牌信息和设计偏好生成方案供选择定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过回答问题生成 Logo 选项。 3. Designhill:利用 AI 技术创建个性化 Logo 设计,用户选择元素和风格生成方案。 4. LogoMakr:提供简单易用的设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素及 AI 辅助建议。 6. LogoAI by Tailor Brands:根据用户输入快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,创建个性化 Logo。 使用这些工具时,用户可根据品牌理念和视觉偏好通过简单交互获得设计方案,并进一步定制优化。还可访问获取更多好用工具。
2024-10-29
视觉模型有哪些
以下为一些常见的视觉模型: Sora:符合视觉模型的规模化原则,展示了新兴能力,包括遵循指令、视觉提示工程和视频理解等显著功能。 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持高分辨率图像理解,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型,在多模态权威学术榜单上综合成绩优异。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,能从任意给定分辨率的图像快速生成。 ComfyUI IPAdapter 中的图像模型:如 CLIPViTH14laion2Bs32Bb79K.safetensors 和 CLIPViTbigG14laion2B39Bb160k.safetensors,下载后需按特定名称命名并放入指定文件夹。
2024-10-25
有代码基础和数学基础,帮我制定一份AI的学习计划,主要方向是数据分析、计算机视觉和AIGC
以下是一份针对您有代码基础和数学基础,以数据分析、计算机视觉和 AIGC 为主要方向的 AI 学习计划: 一、基础知识学习 1. 深入学习 AI 相关的基本概念,包括但不限于: AI(人工智能):了解其定义、发展历程和应用领域。 机器学习:掌握监督学习、无监督学习和强化学习的原理和应用。 深度学习:理解神经网络和神经元的工作原理。 2. 学习相关数学知识,如线性代数、概率论、统计学等,为后续的学习打下坚实基础。 二、数据分析方向 1. 学习数据分析的基本流程和方法,包括数据收集、清洗、预处理和可视化。 2. 掌握常见的数据分析工具和库,如 Python 的 Pandas、NumPy、Matplotlib 等。 3. 学习数据挖掘和机器学习算法在数据分析中的应用,如分类、回归、聚类等。 三、计算机视觉方向 1. 学习计算机视觉的基本概念和原理,如图像处理、特征提取、目标检测等。 2. 掌握深度学习框架,如 TensorFlow、PyTorch 等,并学习使用它们进行计算机视觉任务的开发。 3. 实践常见的计算机视觉项目,如人脸识别、图像分类、目标跟踪等。 四、AIGC 方向 1. 了解 AIGC 的发展现状和应用场景。 2. 学习生成式模型,如生成对抗网络(GAN)、变分自编码器(VAE)等。 3. 实践 AIGC 相关的项目,如文本生成、图像生成等。 五、学习资源推荐 1. 在线课程:Coursera 上的《机器学习》《深度学习专项课程》等。 2. 书籍:《机器学习》(周志华)、《深度学习》(伊恩·古德费洛等)。 3. 开源项目:在 GitHub 上寻找相关的优秀开源项目进行学习和实践。 4. 视频资源: :某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容硬核,值得观看。 六、实践与项目经验积累 积极参与实际项目,将所学知识应用到实际中,不断提升自己的能力。 请注意,学习是一个持续的过程,需要不断地实践和总结,祝您学习顺利!
2024-09-18
AI视觉算法
以下是关于 AI 视觉算法的相关内容: GPT4 Vision GPT4 Vision 是 OpenAI 高级模型 GPT4 的创新功能,于 2023 年 9 月推出,能够解释视觉内容和文本,为用户提供更丰富、更直观的交互体验。 GPT4V 模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。它建立在复杂的深度学习算法之上,能有效处理复杂的视觉数据。 GPT4V 允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。 GPT4V 的工作原理: 利用先进的机器学习技术解释和分析视觉和文本信息。 对庞大数据集进行训练,包括文本和各种视觉元素。 训练过程结合强化学习,采用两阶段训练方法,先掌握视觉语言知识,再对更小、更高质量的数据集进行微调,以提高生成的可靠性和可用性。 计算机视觉 图像分类和物体识别:将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别:不仅分类或识别物体,还检测物体是否出现在图像中。 图像分割算法:识别物体位置,并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪:检测视频中的奔跑者,并追踪其轨迹和运动方向。 自然语言处理 文本分类:识别邮箱或文本中的内容并归类,可用于情绪识别。 信息检索:输入关键字,找出相关文档。 名称实体识别:找出句子中的名称,自动提取电话、姓名、国籍等。 机械翻译:进行语言翻译。 解析与语音部分标注技术:标注句子词性,让 AI 系统找出需留意的词语。 解析器:将单词组合成短语和句子,也是一种分类标签。 语音识别:将麦克风记录的空气高速压力变化数据转化为文本。 触发词检测:识别触发词。 语音 ID 识别:通过倾听说话来识别身份。
2024-09-05
chilloutmix模型
以下是关于 chilloutmix 模型的相关信息: 在腊八节相关的生成中,模型为 chilloutmix_NiPrunedFp32Fix,生成尺寸与草稿图保持一致,有正、负面关键词及 ControlNet 设置等具体参数。 在猫猫相关的生成中,虽然作者建议使用 chilloutmix_NiPrunedFp32Fix 模型,但也可以尝试其他模型。 在 AIGC Weekly 09 中,提到从 civitai 下载 ChilloutMix 模型并放到整合包 models\\Stablediffusion 目录里启动 web UI 切换模型。
2024-11-17
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
sd模型
Stable Diffusion(SD)模型是由 Stability AI 和 LAION 等公司共同开发的生成式模型,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。 文生图任务是将一段文本输入到 SD 模型中,经过一定迭代次数生成符合文本描述的图片。例如输入“天堂,巨大的,海滩”,模型生成美丽沙滩的图片。 图生图任务在输入文本基础上再输入一张图片,模型根据文本提示将输入图片重绘以更符合文本描述。比如在之前生成的沙滩图片上添加“海盗船”。 输入的文本信息需通过“桥梁”CLIP Text Encoder 模型转换为机器数学信息。该模型作为 SD 模型中的前置模块,将输入文本信息编码,生成 Text Embeddings 特征矩阵,用于控制图像生成。 CLIP 模型包含 Text Encoder 和 Image Encoder 两个模型,在 Stable Diffusion 中主要使用 Text Encoder 模型。它将输入的文本 Prompt 编码转换成 Text Embeddings(文本的语义信息),通过 UNet 网络中的 CrossAttention 模块嵌入 Stable Diffusion 中作为 Condition,对生成图像的内容进行控制与引导。目前 SD 模型使用的是中的 Text Encoder 模型。 CLIP ViTL/14 中的 Text Encoder 是只包含 Transformer 结构的模型,由 12 个 CLIPEncoderLayer 模块组成,模型参数大小是 123M,输出的 Text Embeddings 维度为 77x768。 以下是相关资源获取方式: SD 模型权重百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得包含多种模型权重的资源链接。 SD 保姆级训练资源百度云网盘:关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得包含数据处理、模型微调训练及基于 SD 的 LoRA 模型训练代码等全套资源。 Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载:关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2024-11-17
我是一名高中历史老师,请问用什么大模型能帮我做教学设计
以下为您推荐一些利用大模型辅助高中历史教学设计的案例: 有一位历史老师使用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。例如明朝灭亡、南京、1645 年 5 月的相关案例,您可以参考:https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 对于历史专业的学生,当他们遇到像 ChatGPT 这样的语言模型时,已经训练有素能够识别一些常见的陷阱,如事实不准确等,并通过事实核查、分析体裁和受众、在相关来源中搜索等技能来解决这些问题。 语言模型对于历史学家和历史专业的学生是有益的,但对于历史老师和其他教育工作者在短期内可能会带来一些问题,需要重新思考许多作业的布置方式。 您可以尝试借鉴这些案例,根据您的教学需求和学生特点,对大模型的应用进行调整和优化。
2024-11-17
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
免费的语言ai学习工具
以下为您推荐一些免费的语言 AI 学习工具: LingoDeer:https://www.lingodeer.com/ 这是一款使用游戏和互动活动来教孩子英语的应用程序。它提供各种课程,涵盖从字母和数字到更高级的语法和词汇。还具有家长仪表板,方便跟踪孩子的进度并设置学习目标。 Busuu:https://www.busuu.com/ 是另一个流行的语言学习应用程序,提供英语和其他多种语言的课程。使用各种教学方法,包括音频课程、视频课程和互动练习,还有社区功能,可让孩子与来自世界各地的其他孩子练习英语口语。 Memrise:https://www.memrise.com/ 一款使用抽认卡和游戏来教孩子英语的应用程序。提供各种课程,涵盖从基本词汇到更高级的会话技巧,具有社交功能,可与朋友和家人一起学习。 Rosetta Stone:https://www.rosettastone.com/ 语言学习程序,使用沉浸式方法教孩子英语,让孩子在自然环境中使用英语,具有语音识别功能,帮助练习发音。 Duolingo:https://www.duolingo.com/ 免费的语言学习应用程序,提供英语和其他多种语言的课程,使用游戏化方法让学习有趣。 在为孩子选择 AI 工具时,要考虑他们的年龄、兴趣和学习风格,还需考虑应用程序的功能和成本。 另外,使用 AI 学习一门外语还可以通过以下方式和工具: 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容。通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,按课程指引学习。 Babbel:结合 AI 技术,提供个性化课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按学习计划学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)学习。 AI 对话助手: ChatGPT:可用来模拟对话练习,提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
2024-11-16
语言学习
以下是关于使用 AI 学习语言的相关内容: Claude3 在语言学习方面的表现: Claude3 在语言学习方面展现出了出色的能力。对于复杂的语言任务,如翻译和分析不寻常的句子、处理复杂的文学段落、新闻文章以及不同语法和书写系统的文本,Claude3 都表现出了对语言结构的深刻理解,能够智能推断未知词汇、恰当使用借词、给出可信的词源分析,并保持原文风格进行翻译。在与 GPT4 的对比测试中,Claude3 表现出色,而 GPT4 则完全失败。 使用 AI 学习一门外语的方法和工具: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。 4. 语言学习应用: Duolingo:使用 AI 个性化学习体验,根据进度和错误调整练习内容,通过游戏化方式提供词汇、语法、听力和口语练习。下载应用,选择要学习的语言,并按照课程指引进行学习。 Babbel:结合 AI 技术,提供个性化的课程和练习,重点在于实际交流所需的语言技能。注册账户,选择语言课程,按照学习计划进行学习。 Rosetta Stone:使用动态沉浸法,通过 AI 分析学习进度,提供适合的练习和反馈。注册并选择学习语言,使用多种练习模式(听力、口语、阅读和写作)进行学习。 5. AI 对话助手: ChatGPT:可用来模拟对话练习,帮助提高语言交流能力。在聊天界面选择目标语言,与 AI 进行对话练习。可以询问语法、词汇等问题,甚至模拟实际交流场景。 Google Assistant:支持多种语言,可用来进行日常对话练习和词汇学习。设置目标语言,通过语音命令或文本输入与助手进行互动,练习日常用语。
2024-11-16
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
什么是知识库,以及他的运作原理是什么,请用小白也能理解的语言进行说明
知识库可以用比较通俗的方式来理解: 想象一个大语言模型就像一个非常聪明、读过无数书的人,但对于一些特定的工作场景中的细节,比如见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折,它可能并不清楚。这时候,知识库就像是给这个聪明的人发的一本工作手册。 从更专业的角度来说,知识库的运作原理通常包括以下几个步骤: 1. 文档加载:从各种不同的来源,比如 PDF、SQL 数据、代码等加载相关的文档。 2. 文本分割:把加载的文档分割成指定大小的块,称为“文档块”或“文档片”。 3. 存储:这包括两个环节,一是将分割好的文档块进行嵌入,转换成向量的形式;二是将这些向量数据存储到向量数据库中。 4. 检索:当需要使用数据时,通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给大语言模型,大语言模型会根据问题和检索出来的提示一起生成更合理的答案。 以车型数据为例,每个知识库的分段中保存了一种车型的基础数据。当用户问宝马 X3 的售价是多少时,就能匹配到对应车型的分段,然后从其中获取到售价信息。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2024-11-13
现在国内语言生成式AI有多少个在做的,比如说百度的文心一言和阿里的通义
目前国内在做语言生成式 AI 的有不少,例如百度的文心一言、阿里的通义千问、讯飞的讯飞星火、智谱华章的智谱清言、字节跳动的豆包、腾讯的元宝、昆仑万维的天工 AI 等。 此外,还有一些在特定时间上线的大模型,如 8 月正式上线的包括北京的百度(文心一言)、抖音(云雀大模型)、智谱 AI(GLM 大模型)、中科院(紫东太初大模型)、百川智能(百川大模型),上海的商汤(日日新大模型)、MiniMax(ABAB 大模型)、上海人工智能实验室(书生通用大模型)。 需要注意的是,不同的大模型具有各自的特点和功能,在使用和应用场景上可能存在差异。
2024-11-06
大语言模型综述论文有哪些
以下是一些大语言模型的综述论文: 参考文献: B.Wang, W.Chen, H.Pei, C.Xie, M.Kang, C.Zhang, C.Xu, Z.Xiong, R.Dutta, R.Schaeffer 等,“Decodingtrust:GPT 模型中信任度的全面评估”,arXiv 预印本 arXiv:2306.11698,2023。 Z.Zhang, L.Lei, L.Wu, R.Sun, Y.Huang, C.Long, X.Liu, X.Lei, J.Tang, 和 M.Huang, “Safetybench:使用多项选择题评估大型语言模型的安全性”,2023。 X.Shen, Z.Chen, M.Backes, Y.Shen, 和 Y.Zhang, “现在就做任何事:在大型语言模型上表征和评估野外越狱提示”,arXiv 预印本 arXiv:2308.03825,2023。 X.Liu, N.Xu, M.Chen, 和 C.Xiao, “Autodan:在对齐的大型语言模型上生成隐蔽的越狱提示”,arXiv 预印本 arXiv:2310.04451,2023。 S.Zhu, R.Zhang, B.An, G.Wu, J.Barrow, Z.Wang, F.Huang, A.Nenkova, 和 T.Sun, “Autodan:对大型语言模型的可解释梯度基对抗攻击”,2023。 A.Zhou, B.Li, 和 H.Wang, “针对越狱攻击保护语言模型的强健提示优化”,arXiv 预印本 arXiv:2401.17263,2024。 X.Guo, F.Yu, H.Zhang, L.Qin, 和 B.Hu, “Coldattack:用隐蔽性和可控性越狱 LLMs”,2024。 T.Shen, R.Jin, Y.Huang, C.Liu, W.Dong, Z.Guo, X.Wu, Y.Liu, 和 D.Xiong, “大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu, X.Lei, S.Wang, Y.Huang, Z.Feng, B.Wen, J.Cheng, P.Ke, Y.Xu, W.L.Tam, X.Zhang, L.Sun, H.Wang, J.Zhang, M.Huang, Y.Dong, 和 J.Tang, “Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano, J.Leike, T.B.Brown, M.Martic, S.Legg, 和 D.Amodei, “基于人类偏好的深度强化学习”,2023 年。 T.Yu, Y.Yao, H.Zhang, T.He, Y.Han, G.Cui, J.Hu, Z.Liu, H.T.Zheng, M.Sun, 和 T.S.Chua, “RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah, “使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI, “Sora 安全。”https://openai.com/sorasafety,2024 年。 Z.Fei, X.Shen, D.Zhu, F.Zhou, Z.Han, S.Zhang, K.Chen, Z.Shen, 和 J.Ge, “Lawbench:大型语言模型的法律知识基准测试”,arXiv 预印本 arXiv:2309.16289,2023 年。 市场分析 其他观点 相关论文: :斯坦福大学对基础模型的概述论文。 :年度回顾,涵盖 AI 领域的所有事物。 :对大型语言模型(LLMs)在劳动力市场潜在影响的早期研究。 :Eric Topol 医生揭示了人工智能如何有可能将医生从耗费大量时间的任务中解放出来,从而不会干扰到人与人之间的连接。
2024-11-02