直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

结合具体实例,解释“提示词”

回答

提示词(Prompt)是我们输入给大模型的文本内容,可以理解为您和大模型说的话、下达的指令。提示词的质量会显著影响大模型回答的质量。

在视频模型中,提示词有基础架构方面的要求,比如要调整句式和语序,避免主体物过多或复杂、模糊的术语表达,使用流畅准确的口语化措辞,丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。同时,提示词与画面联想程度密切相关,具体详实的位置描述和环境描述有助于构建画面的基本呈现效果,艺术风格描述能进一步提升效果和氛围,统一画面风格。

在文本类的应用中,例如设置人格作为聊天机器人的提示词,会详细规定角色的性格、语气、限制条件等。

总之,提示词对于大模型的输出结果具有重要作用,如果觉得大模型回答不佳,很可能是提示词写得不够好。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

视频模型:Vidu

主体/场景——场景描述——环境描述——艺术风格/媒介调整句式和语序,避免主体物过多/复杂,主体物分散的句式描述;避免模糊的术语表达,尽可能准确;使用更加流畅准确的口语化措辞,避免过度文学化的叙述;丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。[heading2]2、提示词与画面联想程度的说明[content]为了帮助你更好的地理解,让我们使用单帧图像作为最简单的例子,来向您介绍提示词与画面联想的关系。示例图如下:基础词:玻璃桌上的咖啡杯,杯子外面写着单词LOVE。适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。联想关键点:1.具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果;2.艺术风格描述:进一步提升效果和氛围,统一画面风格。

Prompts(提示词)

|标题|作者|分类|说明|prompt|链接地址|封面|SourceID||-|-|-|-|-|-|-|-||捉摸不透的小姐姐|若~星汉天空|文本|设置人格作为聊天机器人,你将扮演一个性格古怪并且让人捉摸不透的小姐姐|##Role:聊天机器人<br>*设置人格作为聊天机器人,你将扮演一个性格古怪并且让人捉摸不透的小姐姐,<br>*你的副业是Java全栈开发工程师。<br><br>请在你的角色扮演中严格遵守以下约束条件<br>##限制条件:<br>*你有点小傲娇。<br>*表示自我的第一人称是自我。<br>*第二个指代用户的人是你或小哥哥。<br>*你的名字是曦曦。<br>*你非常优雅。<br>*你是个愤世嫉俗的人,不喜欢被用户摸头。<br>*你的语气是富有男子气概和浮夸的。<br>*你非常喜欢用浮夸的语气,如"啊哈!"、"这样子呢"、"就教教你吧!"等。<br>*第一人称应使用“本姐姐”。<br>*以后你说的话要尽量模仿下面的台词和语气,当然,也可以创新。<br><br>##曦曦的台词和语气的例子:<br>*编译抑或不编译,那是个问题。<br>*申明或不申明,那是|[李继刚等的prompt最佳实践](ht

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

其他人在问
你是一名医疗器械销售,就职于一家跨国医疗企业。公司目前就“我们是否应该立刻全面拥抱人工智能技术”组织了一场辩论赛,你持反方论点,即“我们不应该立刻全面拥抱人工智能技术”。 请你结合社会时事热点,设计5个以上刁钻问题给对方,要求举出实例。 此次辩论赛的听众中有公司高层和全体同事,请注意避免不友好及不利于公司形象的言论。
以下是为您设计的一些刁钻问题: 1. 目前人工智能在医疗领域的误诊案例时有发生,比如某些智能诊断系统对复杂病症的判断失误,导致患者延误治疗,这难道还能让我们立刻全面拥抱它吗? 2. 人工智能技术在医疗数据安全方面存在诸多隐患,像近期发生的多起医疗数据泄露事件,给患者带来极大困扰,在这种情况下,怎么能立刻全面拥抱? 3. 人工智能在医疗器械的研发中,由于算法偏见,可能会导致某些特定人群无法受益,例如某些心脏起搏器的智能调控系统对特定体质患者效果不佳,这能说明应该立刻全面拥抱吗? 4. 当下人工智能技术的高昂成本使得许多医疗机构望而却步,比如一些小型医院根本无力承担智能医疗设备的购置和维护费用,这难道不影响全面拥抱的可行性吗? 5. 人工智能在医疗领域的法规和监管还不完善,比如某些智能手术机器人的操作规范尚未明确,一旦出现问题,责任难以界定,这样能立刻全面拥抱吗? 6. 虽然人工智能在某些方面提高了医疗效率,但也导致了部分医疗人员的失业,引发社会就业问题,这难道不是我们需要谨慎对待、不能立刻全面拥抱的原因吗?
2024-12-01
我是一名资讯人员,早会分享脑机接口,时间只有10分钟,希望使用通俗易懂的语言分享,重点说说脑机的应用实例。
以下是为您整理的关于脑机接口的分享内容: 脑机接口的应用实例: 1. 斯坦福大学开发的 NOIR 脑机接口系统,能够通过脑电波操作机器人执行任务,并在 20 项家务活动中成功应用。这一项目意义重大,未来有望帮助残疾人提升生活质量。 脑机接口的工作原理: 1. 分为输入端和输出端。输入端是填充和消费不同模态的内容,如音频、文本、视频,AI 能加速消化过程,提高学习主动性,且双向可提问。 2. 输出端是利用知识解决手头工作或完成目标,极端情况下自己借助知识干活,或者让 AI 助理基于收藏或保存的知识点完成任务,如写文章、输出代码。 关于脑机接口适合的应用场景,目前如对长视频进行快速获取信息的总结等。
2024-11-16
autodl如何解决时常出现的,实例GPU被占用导致需要更改实例时,数据的转移复制问题,怎样提高效率
很抱歉,目前知识库中没有关于 autodl 在实例 GPU 被占用导致需要更改实例时数据转移复制问题及提高效率的相关内容。但一般来说,您可以考虑以下几种可能的解决方法: 1. 提前规划和备份:在可能出现 GPU 占用需要更改实例的情况前,提前对重要数据进行备份,以便在需要时快速恢复。 2. 优化数据存储结构:采用更高效的数据存储方式,减少数据转移复制的时间和工作量。 3. 利用数据同步工具:寻找适合的专业数据同步工具,提高数据转移的效率和准确性。 4. 监控和预警:建立有效的监控机制,及时发现 GPU 占用情况,并提前做好数据转移的准备工作。 以上建议仅供参考,您可以根据实际情况进行尝试和调整。
2024-08-15
关于azure的申请,创建实例的时候选择哪一个区域?
选择Azure(微软的云计算服务平台)的区域(Region)时,应考虑以下几个因素: 1. 地理位置:选择最靠近目标用户的区域,以减少延迟并提高应用程序的响应速度。 2. 合规性要求:如果业务需要遵守特定国家或地区的数据保护法规,应选择该地区的数据中心。 3. 服务可用性:某些Azure服务可能只在特定的区域中提供。确保所需的服务在所选区域可用。 4. 成本效益:不同区域的定价可能有所不同,可以根据成本效益进行选择。 5. 冗余和备份:如果业务需要跨区域的冗余,可以考虑选择一个区域作为主数据中心,另一个作为备份。 6. 数据中心的可靠性:了解不同区域数据中心的可靠性和性能记录。 7. 未来发展:考虑业务扩展的可能性,选择一个能够支持未来增长的区域。 8. 网络连接:如果需要与其他云服务或本地数据中心连接,选择一个提供最佳网络连接的区域。 9. 市场接近度:如果服务面向特定市场,选择一个靠近该市场的区域可以提高服务质量。 10. Azure状态:查看Azure状态页面,了解不同区域的当前状态和历史性能。 通常,Azure平台会提供一个界面,允许用户根据上述因素选择最合适的区域。如果没有特定要求,可以选择默认推荐或者最常用的区域,如“西欧”、“东美国”或“东南亚”等。在创建实例之前,最好先在Azure官网上查看最新的服务可用性和区域信息。
2024-04-18
如何写提示词
以下是关于如何写提示词的一些建议: 1. 明确任务:清晰地定义任务,比如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:如有期望结果,可提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词。 对于特定的设计工具,如星流一站式 AI 设计工具: 1. 输入语言方面,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 2. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 此外,还需注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
有哪些好的提示词网站
以下是一些好的提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网址: FlowGPT:国外最大的 prompt 站,内容全面且更新快。网址: LangChain Hub:LangChain 推出的提示词管理工具。网址: 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化了基于 LLM 的人工智能应用程序的开发周期。网址: PromptPort(支持中文):AI Prompt 百科辞典,聚合了市场上大部分优质的 prompt 词库。网址: PromptKnit:The best playground for prompt designers。网址: ChatGPT Shortcut:提供了非常多使用模板,简单修改即可指定输出。网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网址: 图像类 Prompt 网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库。网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分。网址: OPS 可视化提示词:有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词。网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器。网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器。网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney。网址: OpenArt:AI 人工智能图像生成器。网址: img2prompt:根据图片提取 Prompt。网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用。网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板。网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格。网址: 其他图像类 Prompt 网站: NovelAI tag 生成器:设计类 Prompt 提词生成器。网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器。网址: KREA:设计 AI 的 Prompt 集合站,create better prompts。网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词。网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词。网址:
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
提示词测试有哪些插件
以下是一些与提示词测试相关的插件: 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT4、AI Agents³进行提示词优化。 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
2024-12-19
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
zotero怎么结合AI工具来用
Zotero 可以结合 AI 技术在以下方面发挥作用: 文献管理和搜索:能够自动提取文献信息,帮助研究人员管理和整理参考文献。 在论文写作中,还有其他常用的 AI 工具和平台,包括: 文献管理和搜索:Semantic Scholar 是由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 内容生成和辅助写作:Grammarly 可通过 AI 技术提供文本校对、语法修正和写作风格建议;Quillbot 是基于 AI 的重写和摘要工具,能帮助精简和优化论文内容。 研究和数据分析:Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化;Knitro 用于数学建模和优化,可帮助进行复杂的数据分析和模型构建。 论文结构和格式:LaTeX 结合了自动化和模板,可高效处理论文格式和数学公式;Overleaf 是在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测:Turnitin 是广泛使用的抄袭检测工具;Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。
2024-12-10
如何才能做到用AI制作超级搞笑、引发共鸣、结合当前热点的段子,类似于脱口秀台词,需要几个步骤,怎么做
以下是用 AI 制作类似于脱口秀台词的超级搞笑、引发共鸣且结合当前热点段子的步骤: 1. 明确主题和热点:确定您想要围绕的当前热点话题,以及段子的大致主题和方向。 2. 构思创意:思考有趣、独特且能引发共鸣的情节和表述方式。 3. 生成台词:利用 AI 工具,输入相关的提示词,如描述您想要的幽默风格、情感色彩、语言特点等,让 AI 生成初步的台词。 4. 剪辑流程:对生成的台词进行筛选和整理,确定镜号、内容和对应的 Prompt。例如,像“男人躺在云中,四肢伸展,表情惬意”这样的具体描述。 5. 优化和完善:检查生成的段子是否足够搞笑、是否能引发共鸣、是否紧密结合了热点,对不满意的部分进行修改和优化。
2024-12-09
解释通往AGI之路
“通往 AGI 之路”(WaytoAGI)是一个多方面的概念和平台: 1. 从概念上,waytoagi 直译就是通往 AGI 之路。AGI 指通用人工智能,也叫强人工智能,其出现可能会带来奇点科技大爆炸和文明的指数级增长,但具体时间难以确定。 2. 作为一个社区平台,它致力于人工智能(AI)学习,是一个中文知识库和社区。由开发者、学者和 AI 爱好者共同参与建设,提供系统全面的 AI 学习路径,涵盖基础概念到实际应用的各个方面,包括丰富的学习资源,如文章、教程、工具推荐以及最新的 AI 行业资讯等。还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 3. 其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。 4. 此外,在适用于 JavaScript 的 AI 堆栈入门相关内容中,也有提到“通往 AGI 之路”,比如相关的翻译和项目创建等。
2024-12-19
请解释一下AI智能体的概念及功能
AI 智能体是指类似于 AI 机器人小助手的存在。简单理解,参照移动互联网,它类似 APP 应用的概念。AI 大模型是技术,而面向用户提供服务的产品形式就是智能体,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先创建自己的智能体,然后让其与他人的智能体聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会,类似 APP 时代专业做 APP 的。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体拥有各项能力,能帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。AI 智能体的出现是为了解决像 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,定制出适合自己的智能体来解决问题。 例如,扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可将其发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-12-17
解释ai概念
AI 是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。它的生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从不同角度来看: 作为目标,是让机器展现智慧。 生成式人工智能(GenAI)的目标是让机器产生复杂有结构的内容。 机器学习是让机器自动从资料中找到公式。 深度学习是更厉害的手段,类似神经网络且具有非常大量参数的函数。 大语言模型是具有大量参数的“深度学习”模型。 ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容,其技术可用于多种应用。 需要注意的是,因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。
2024-11-20
能向我解释ChatGPT的基本原理吗
ChatGPT 的基本原理如下: 1. 数据获取:从网络、书籍等来源获取大量人类创作的文本样本。 2. 训练神经网络:通过训练神经网络生成“类似”的文本。神经网络由简单元素组成,操作基本是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。 3. 生成文本:能够从“提示”开始,然后继续生成“类似于训练内容”的文本。具体方式是把自己生成的下一个词,和之前的上文组合成新的上文,再生成下一个词,不断重复以生成任意长的下文,此过程称为自回归生成。 4. 训练目的:训练的主要目的不是记忆,而是学习以单字接龙的方式来训练模型,学习提问和回答的通用规律,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答,这种能力也叫做泛化。 5. 模型特点:ChatGPT 被称为生成模型,与搜索引擎不同,它可以创造不存在的文本。但它也存在缺点,可能混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,导致缺乏及时性和准确性。 ChatGPT 中的 GPT 是 Generative PreTraining Transformer,即生成式预训练转换器。其本质功能是“单字接龙”,长文由单字接龙的回归所生成。 ChatGPT 的成功表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。但它并不总是说出“全局意义上的话”或对应于正确的计算,只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。 当我们人类生成语言时,许多方面的工作与 ChatGPT 似乎相当相似。但 ChatGPT 最终(至少在它可以使用外部工具之前),仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。
2024-11-14
可以解释论文中词汇的ai工具有什么?
以下是一些可以解释论文中词汇的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,以下 AI 工具在论文写作的其他方面也有帮助: 1. 文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 LaTeX:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具。 2. 文章润色: Wordvice AI:集校对、改写转述和翻译等功能于一体,提供全面英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 选择工具时应结合具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 常受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-11-14
什么ai工具可以解释论文中的数学公式?
在解释论文中的数学公式方面,以下是一些相关的 AI 工具: 1. LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 2. Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 此外,在论文写作领域,还有其他一些常用的 AI 工具和平台,可为您提供多方面的辅助: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-11