Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

DeepSeek提示词

Answer

以下是关于 DeepSeek 提示词的相关内容:

  1. 生成小红书爆款单词视频:
    • 开始:输入单词主题、图片风格、单词数量,如非洲动物、真实风格、2。
    • 生成单词数组:选择 deepseek-r1 模型,输入单词主题、单词数量,为用户输出指定数量的单词,并以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。
  2. Deepseek 时代提示词之关键诉求:
    • 观察发现完整的提示词可能不如片段有效,甚至可能干扰模型的思考流程,过长提示会带来大量的 Token 浪费和上下文污染,特别是在多轮对话中。在 deepseek 时代,用户只需要在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。新旧提示法对比,传统方法像唠叨家长,新型技巧像对聪明助理打暗号。
  3. 让 DeepSeek 生成相机运动轨迹的提示词:以往的提示词是场景、构图、尺寸、位置、形态、半身全身、环境的组合,现在把这些提示词喂给 DeepSeek,要求以“相机运动轨迹”的方式来描写,可以得到新提示词,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。对空间理解和对语义的遵循能让有光影变化的泳池自然地生成出来,海螺 AI 甚至还知道给主角穿上与场景匹配的拖鞋。
Content generated by AI large model, please carefully verify (powered by aily)

References

五津: DeepSeek+扣子:1分钟生成小红书爆款单词视频

输入单词主题、图片风格、单词数量。如非洲动物、真实风格、2。[heading2]2、生成单词数组[content]选择deepseek-r1模型,输入单词主题、单词数量,这样deepseek就可以为用户输出指定数量的几个单词,举例如下。mother/ˈmʌðər/妈妈The lady with long hair is my mother.那个长头发的女士是我的母亲。以数组方式输出。目的是用于后续循环时以数组方式循环。提示词:[heading2]角色[content]你是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。[heading2]技能[heading3]技能1:输出关联英语单词[content]当用户输入主题{{zhuti}}时,分析主题内涵,运用专业知识,输出{{shuliang}}个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过15个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。[heading3]举例:[content]mother/ˈmʌðər/妈妈The lady with long hair is my mother.那个长头发的女士是我的母亲。[heading2]限制[content]仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量yingwen,中文翻译对应变量zhongwen,美式音标对应变量yinbiao,英文句子对应变量juzi_yingwen,中文句子翻译对应变量juzi_zhongwen,不得有其他格式偏差。

Deepseek时代提示词 之 关键诉求

模型都可以自己思考了,写那么长的提示词干啥?最近的观察:完整的提示词可能不如片段有效,甚至可能干扰模型的思考流程。过长提示带来了大量的Token浪费和上下文污染,特别是在多轮对话中。deepseek时代,或者说模型有能力深度思考的时代,用户只需要在关键点进行引导,让模型自主发挥。「关键诉求直通车」模式是新一代LLM的正确打开方式。[heading3]一、新旧提示法对比[heading4]传统方法(费力不讨好)[content]🔹像唠叨家长:"写一篇关于环保的文章,要分五个部分,每部分有案例,案例要近三年的,开头用疑问句,结尾有号召,字数控制在800字..."→模型:忙于数要求清单,创造力被框死[heading4]新型技巧(精准狙击)[content]🔹像对聪明助理打暗号:"主题:环保|要最新案例|结尾有力道"→模型:自动调用知识库中最相关数据,自主组织最佳结构

海螺超级创作者|DeepSeek + 海螺AI,AI视频迈入“空间理解”新阶段

Jason分享到“以往的提示词,是场景,构图,尺寸,位置,形态,半身全身,环境的组合”而现在,把这些提示词喂给DeepSeek要求以“相机运动轨迹”的方式来描写可以得到一个再简单不过的新提示词,如:“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”[0bc3uuabeaaamuadyuvplbtvbjodcksqaeqa.f10002.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/S3HhbaRBvo9YoAxrwoycEtolnIX?allow_redirect=1)“注意看,我最开始垫的图里,甚至没有泳池哦”对空间理解和对语义的遵循让有光影变化的泳池自然地生成出来海螺AI甚至还知道给主角穿上与场景匹配的拖鞋[heading1]Step2:再换个思路

Others are asking
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且以特定数组形式呈现。 2. Deepseek 时代提示词之关键诉求: 完整的长提示词可能不如片段有效,甚至干扰模型思考流程,带来 Token 浪费和上下文污染,特别是在多轮对话中。 新一代 LLM 的正确打开方式是“关键诉求直通车”模式,如像对聪明助理打暗号,让模型自主发挥。 3. 让 DeepSeek 生成相机运动轨迹的提示词: 以往的提示词包括场景、构图、尺寸、位置、形态、半身全身、环境等组合。 现在要求以“相机运动轨迹”的方式描写,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。 对空间理解和对语义的遵循能让相关元素自然生成,如生成有光影变化的泳池,为主角匹配场景的拖鞋。
2025-03-03
如何给deepseek写提示词
以下是关于给 DeepSeek 写提示词的相关内容: 1. 效果对比:用 Coze 做了小测试,可对比查看。 2. 使用方法: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白后正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 设计阈值系统,可能会根据反馈修改。 用 XML 进行更规范设定,而非 Lisp 和 Markdown。 4. 完整提示词:版本 v1.3。 5. 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 6. 生成单词方面: 输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型,输入单词主题、单词数量,DeepSeek 为用户输出指定数量单词,以数组方式输出。 提示词中,角色为专业单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,以符合要求的数组形式呈现。 7. 生成相机运动轨迹的提示词:以往提示词是场景、构图、尺寸等的组合,现在把这些喂给 DeepSeek,要求以“相机运动轨迹”方式描写,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。
2025-03-03
deepseek到底是什么?打个比方
DeepSeek 是一个在 AI 领域受到关注的品牌。它在硅谷受到关注和追逐,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发了小范围轰动。DeepSeek 不是“中国式创新”的产物,其秘方更具硅谷风格。 DeepSeek 是基于 AI 模型的产品,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。它展示出媲美领先 AI 产品性能的模型,但成本较低,在全球主要市场的 App Store 登顶。在实际使用体验方面,在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方就是多快好省也是不全面的。
2025-03-03
用deepseek写论文指令
以下是关于用 DeepSeek 写论文的相关指令和方法: 1. 高级调试策略: 模糊指令优化:对于宽泛需求,可添加维度约束;对于主观表述,可量化标准。例如,将“写小说”修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”,将“写得专业些”修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:包括首轮生成获取基础内容、特征强化、风格调整和最终校验等步骤。如加强第三段的技术细节描述,改用学术会议报告语气,添加结论部分,检查时间逻辑一致性,列出可能的事实性错误。 2. 高阶能力调用: 文风转换矩阵:如作家风格移植、文体杂交、学术口语化等指令结构和效果示例。 领域穿透技术:如行业黑话破解,例如“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略:包括商业决策支持、创意内容生成、技术方案论证等。 4. 效能增强技巧: 对话记忆管理:如上下文锚定、信息回溯、焦点重置。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题类型的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法和逻辑粘合剂。如“先完成故事大纲→逐章扩展→最后进行伏笔校验”,“确保新章节与前文的三处细节呼应”。 敏感内容处理:如概念脱敏法和场景移植法。 此外,在使用 DeepSeek 写论文时,还需注意以下几点: 示例是一种隐性的需求说明书,添加示例可让大模型更懂需求,但 few short 可能影响模型性能。 自用和他用的提示词在稳定性、经济性、可维护性等方面有较大区别,工业化提示词需稳定、经济且易维护。 将 R1 的思维链给 cloud 回答,结果可能大大改进。 同时,不同的模型有其特点,如 Cloud 3.5 模型多样性差,Deepseek R1 有缺陷但也不错,可根据需求选择合适的模型,如街悦新城的文学大师版等。
2025-03-03
如何高效使用“deepseek+”?
以下是一些关于高效使用“DeepSeek+”的信息: 各地举办了相关活动,如在郑州场展示了搭建的工作流,深圳场分享了出海的落地方案,北京场玩起了 AR+机械汪,广州场探讨了如何辅助速通吃“霸王餐”,福州场有最年轻的分享者展示玩转示例。 可以结合飞书多维表格来发挥其强大之处。 向阳乔木介绍了通过结合 VS Code、Cline 插件和 Deepseek API 等工具提升应用能力,实现自动发送邮件、查找重复文件、网页抓取翻译等功能。 伊登展示了最新 Deepseek+coze 实现新闻播报自动化工作流,具有全自动化处理、40 秒快速出片、成本低廉、输出质量稳定专业等优势,还能进行一系列改进,如加入配套 BGM、增加画面内容和转场效果、使用免费节点替代付费插件、优化模板样式、增加自动化程度支持批量处理等。您可以在扣子商店体验,也可以自己搭建。 您可以参考以上内容,根据您的具体需求来高效使用“DeepSeek+”。
2025-03-03
用deepseek写法学本科论文 有哪些指令
DeepSeek 可用于法学本科论文写作,以下是一些相关指令和方法: 1. 文风转换矩阵: 作家风格移植:例如“用鲁迅杂文风格写职场 PUA 现象”。 文体杂交:比如“将产品说明书改写成《史记》列传格式”。 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 2. 领域穿透技术:行业黑话破解,如“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 效能增强技巧: 对话记忆管理:包括上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。 4. 特殊场景解决方案: 长文本创作:采用分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)和逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。 需要注意的是,使用 DeepSeek 辅助写作时,仍需您自身对法学知识的深入理解和研究,以确保论文的学术性和专业性。
2025-03-03
如何写适配多个llm的提示词
以下是关于如何写适配多个 LLM 的提示词的详细内容: 实现原理: 提示词工程主要由两部分代码组成,即提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例以免 LLM 混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整以让 LLM 知晓可用工具及使用方法。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM,利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,以提高成功率。对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。 相关成果: 目前绝大多数小型本地开源大语言模型以及部分商用大模型接口不支持稳定的 tool calling 功能,现有的微调 LLM 解决方案会浪费大量时间和算力。本文提出仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力。使用多个不具备该能力的 LLM 作为测试模型,在多个工具调用任务上实验成功率达 100%,且基于 comfyui 开发,适合无代码基础的人员复现和修改。
2025-03-03
提示词模板
以下是一些关于提示词模板的相关信息: 以下网站提供了提示词模板: 在 PromptLayer 网站(https://promptlayer.com/createaccount)创建账号,新账号默认是 Free 方案,有 1000 次免费请求用于测试。创建提示词模板的步骤如下: 登录账号后跳转到“Registry”菜单开始创建流程。 点击“Create Templates”按钮出现编写界面。 该页面主要功能包括: Title:为提示词设定的名称。 System 提示词:用于指导和规范模型行为,是主要编辑区域。 User 提示词:属于用户先行动作设定提示词,常用于表述用户的交互动作。 Assistant 提示词:一般是模型输出的内容,也可人工编写模拟模型回复。合理使用 User&Assistant 提示词可模拟多轮对话效果,帮助调试提示词。 Parameters:可选择和设置使用何种模型进行调试,提供一些模型的基本参数来调教模型回复。
2025-03-03
提示词图书馆
以下是一些与提示词相关的资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 此外,还有以下相关内容: 画小二:如何写好提示词是创建智能体第一步,相关资源如,以及提示词网站分享,如: Learn Prompting https://learnprompting.org/docs/intro AI Short https://www.aishort.top/en/ AIPRM https://www.aiprm.com/prompts/ Prompt Library https://promptlibrary.org/ Prompt 网站精选,图像类 Prompt 网站: Public Prompts:免费的 prompt 合集,收集高质量的提示词, OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词, MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用, OpenArt:AI 人工智能图像生成器, AiTuts Prompt:AiTuts Prompt 是一个精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择, AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词, MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,
2025-03-02
我是一名自媒体创作者,想用AI工具文字生图,图片内容如下:一个穿着发光衣服的美女在室内。请你给我提示词
以下是为您生成的提示词,用于生成一个穿着发光衣服的美女在室内的图片: 人物及主体特征:一位美丽的女性,身着发光的衣服,精致的五官,迷人的微笑,优雅的动作 场景特征:室内环境,装饰精美,有柔和的灯光 环境光照:温暖的灯光,营造出温馨的氛围 画幅视角:适中的距离,展现人物的全貌,正常的人物比例,平视的观察视角 画质:高画质,高分辨率 画风:写实 英文提示词为:, drawing, paintbrush, a beautiful woman wearing shining clothes, in an indoor environment with soft lights, delicate features, charming smile, elegant movement, decorated interior, warm lighting, moderate distance, normal proportion,平视视角, high quality, high resolution, realistic 。 同时,您还可以添加反向提示词来排除不想要的效果,例如:NSFw, 。 对于新手而言,您可以通过以下功能型辅助网站来帮助书写提示词: http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息。 https://ai.dawnmark.cn/ ,它的每种参数都有缩略图可以参考,可以方便更加直观地选择提示词。 您还可以去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里,点击生成按钮下的第一个按键,Stable Diffusion 就可以将所有的参数自动匹配。但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会截然不同。您也可以只取其中比较好的一些描述词使用,比如人物描写、背景描述、一些小元素或者是画面质感之类的。
2025-03-02