Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

网商银行产业链金融模型

Answer

以下是为您整合的关于网商银行产业链金融模型的相关信息:

  • 在金融服务业中,生成式 AI 的应用方面:新进入者可能会先使用公开的金融数据优化模型,最终使用自身收集的数据;现有参与者如银行等可利用专有数据,但往往过于保守,这给新进入者带来竞争优势。同时,新的 AI 模型输出需尽可能准确,人类常作为最终验证环节。
  • 企业大模型方面:会免费提供从通用大模型蒸馏出来的基础大模型,结合数据工场、知识工场和模型工场三套开发平台,以及 Agent 应用开发框架,可训练出多个场景化大模型。例如天津某银行为满足金融需求,用通用大模型训练了几个专用大模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

金融服务业将比你想象得更快地接纳生成式 AI

1.使用金融数据训练LLMs:LLMs目前是在互联网上训练的。金融服务用例将需要使用特定于用例的金融数据来微调这些模型。新进入者可能会开始使用公开的公司财务数据、监管文件和其他易于获取的公开金融数据来优化他们的模型,然后最终在随着时间的推移使用他们自己收集的数据。现有的参与者,如银行或具有金融服务业务的大型平台(例如,Lyft),可以利用他们现有和专有的数据,这可能会给他们带来初步的优势。然而,现有的金融服务公司在接受大型平台转变时往往过于保守。在我们看来,这给了无拖累的新进入者竞争优势。2.模型输出准确性:考虑到金融问题的答案可能对个人、公司和社会产生的影响,这些新的AI模型需要尽可能准确。它们不能产生幻觉或编造错误但听起来自信的答案来回应关于个人税收或财务状况的关键问题,它们需要比流行文化查询或通用高中作文的大致答案更准确。一开始,人类经常会作为AI生成答案的最终验证环节。

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

我们会给你免费提供一个基础大模型,这个基础大模型是从通用大模型里蒸馏出来的,然后数据工场、知识工场和模型工场是三套开发平台,数据是做数据的治理和标注,知识是从知识管理中间把相应的知识提取出来,既对它来进行知识对齐和知识训练。模型工场是用来用对这个模型进行部署和训练的,再加上Agent应用开发框架,训练出来自己的多个场景化的大模型。这个天津某银行用这个方法我们为它做了一个私有大模型的定制,为它的这个金融需求,拿一个通用大模型训练了几个专用的大模型。

周鸿祎免费课AI系列课程第二讲-企业如何拥抱AI

我们会给你免费提供一个基础大模型,这个基础大模型是从通用大模型里蒸馏出来的,然后数据工场、知识工场和模型工场是三套开发平台,数据是做数据的治理和标注,知识是从知识管理中间把相应的知识提取出来,既对它来进行知识对齐和知识训练。模型工场是用来用对这个模型进行部署和训练的,再加上Agent应用开发框架,训练出来自己的多个场景化的大模型。这个天津某银行用这个方法我们为它做了一个私有大模型的定制,为它的这个金融需求,拿一个通用大模型训练了几个专用的大模型。

Others are asking
ai产业链上市公司有哪些
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 产业链上市公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue, Sequoia, Redpoint, Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金, M Ventures, 淡马锡, Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital, Hamilton Lane, Blumberg Capital, Team8| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst, Kleiner Perkins, Greenoaks| |Groq|20240805|6.4|D|30|AI 芯片|基础设施|芯片|贝莱德, Type One Ventures, Verdure Capital Management, Neuberger Berman| |DevRev|202408|1|A|11|AI 支持代理|应用|企业服务|Khosla Ventures, Mayfield, Param Hansa Values| |Abnormal Security|202408|2.5||50|电子邮件安全|应用|数据|Wellington Management, Menlo Ventures, Greylock, Insight Partners| |Harvey|20240723|1|C|15|法律科技|应用|法律|Google Ventures, OpenAI, Kleiner Perkins, Sequoia| |Skild AI|20240709|3|A|15|机器人技术|应用|机器人|Lightspeed Venture Partners, Coatue, Bezos Expeditions, Sequoia, Menlo Ventures, General Catalyst| |Hebbia|20240708|1.3||7|生成式 AI 搜索|应用|企业服务|Andreessen Horowitz, Peter Thiel, Index Ventures, Google Ventures| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth, 礼来公司基金会, EPIQ Capital Group, Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures, NEA, Kleiner Perkins, Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners, Kleiner Perkins, Sequoia, Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia, OpenAI, 微软| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint, Lightspeed Venture Partners, USV, IVP, Spark Capital| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures, Celesta Capital, Pledge Ventures, Mayfield, DNS Capital| 信息来源:Techcrunch
2025-01-21
AI产业链
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层布局投入确定性强,但涉及海量资金,入行资源门槛高,未来更多由“国家队”担当重任,普通人可考虑“合作生态”切入机会。 中游技术层处于技术爆炸期,迭代速度快,技术迭代风险高。基础通用大模型研发烧钱,竞争激烈,非巨无霸公司不建议考虑。 下游应用层是广阔蓝海,尽管从业者增加,涌现出一些产品,但成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,发展空间巨大。 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth,礼来公司基金会,EPIQ Capital Group,Jeff Skoll|| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures,NEA,Kleiner Perkins,Lux Capital|| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners,Kleiner Perkins,Sequoia,Databricks Ventures|| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia,OpenAI,微软|| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint,Lightspeed Venture Partners,USV,IVP,Spark Capital|| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures,Celesta Capital,Pledge Ventures,Mayfield,DNS Capital|| 信息来源:Techcrunch
2024-12-31
AI产业或者说AI产业链条上都有哪些事情可以做
AI 产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 在基础设施层,布局投入的确定性最强,但入行资源门槛较高,涉及海量资金投入,未来更多由“国家队”承担重任,普通人可考虑“合作生态”的切入机会。 技术层当前处于技术爆炸时刻,迭代速度极快。对于规模不大的团队或个人,需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层是一片广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,对于普通个体和小团队,强烈推荐重点布局,拥有巨大发展空间。 据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导,对话机器人类别排名第二。北美和欧洲是主要消费市场,这是中国 AI 公司积极出海的重要原因。 美国红杉资本指出,AI 供应链分为六层,各层盈利能力不同。芯片代工厂和芯片设计商是主要赢家,云厂商是供应链核心承载方,处于重金投入阶段,是整个供应链的“链主”,AI 模型开发商目前面临亏损,应用服务商市场规模有限。行业格局方面,头部阵营基本稳定。
2024-12-05
Ai产业链
人工智能产业链包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心逻辑;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要是大模型等技术和产品,是实现各种人工智能应用的关键。 4. 应用层:将人工智能技术应用于行业场景,如医疗保健、工业生产、金融服务等领域。 近年来,我国人工智能产业发展迅速,在技术创新、产品创造和行业应用方面都取得了显著成果,形成了庞大的市场规模。同时,以大模型为代表的新技术不断迭代,产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,但也亟需完善人工智能产业标准体系。 以下是一些关于 AI 训练模型的相关信息: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|prolific.com|AI 训练模型|1818|0.075| |2|Appen|AI 训练模型|357|0.223| |3|ai.google|AI 训练模型|248|0.139| |4|Llama 2|AI 训练模型|222|0.475| |5|火山方舟|AI 训练模型|190|0.526| |6|Roboflow|AI 训练模型|129|0.189| |7|魔搭社区阿里达摩院|AI 训练模型|107|0.103| |8|Lightning AI|AI 训练模型|92|0.308| |9|scale AI|AI 训练模型|47.6|0.025| |10|modular|AI 训练模型|33|0.276| 此外,AI 正在使生物制药和医疗保健产业化,被应用于从药物设计、诊断到医疗保健交付和后勤功能的各个方面。
2024-10-03
Ai产业链上中下游
人工智能产业链通常包括以下四个部分: 1. 基础层:主要涵盖算力、算法和数据。算力为人工智能的运行提供计算能力支持;算法是实现人工智能功能的核心方法;数据则是训练和优化模型的基础。 2. 框架层:指用于模型开发的深度学习框架和工具,有助于提高模型开发的效率和质量。 3. 模型层:主要包括大模型等技术和产品,是人工智能实现各种应用的关键。 4. 应用层:指人工智能技术在行业场景的应用,应用场景横向划分主要分为 ToC(面向消费者)和 ToB(面向企业)。ToC 端能带来的数据飞轮效应,可能是在 AI 早期决胜的关键。同时,下游提供者指集成了人工智能模型的人工智能系统,包括通用人工智能系统的提供者。 近年来,我国人工智能产业在技术创新、产品创造和行业应用等方面发展迅速,形成了庞大的市场规模。伴随以大模型为代表的新技术加速迭代,人工智能产业呈现出创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,不过也亟需完善人工智能产业标准体系。前 Google 创始人 Eric Schmidt 认为未来会是多个垂直模型或者多个垂直助理,包括各种高价值、专业化的 AI 系统,因为很多高价值、特定领域的工作流程特别且必须依赖于丰富的专有数据集。
2024-10-03
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
你的底层大模型用的是哪个?
目前常见的大型语言模型多采用右侧只使用 Decoder 的 Decoderonly 架构,例如我们熟知的 ChatGPT 等。这些架构都是基于谷歌 2017 年发布的论文“attention is all you need”中提出的 Transformer 衍生而来,其中包括 Encoder 和 Decoder 两个结构。 大模型的特点在于: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 大模型之所以能有效生成高质量有意义的回答,关键在于“大”。例如 GPT1 的参数规模是 1.5 亿,GPT2 Medium 的参数规模是 3.5 亿,到 GPT3.5 时,参数规模达到惊人的 1750 亿,参数规模的增加实现了量变到质变的突破,“涌现”出惊人的“智能”。 大模型的预训练机制是指其“脑袋”里存储的知识都是预先学习好的,预训练需要花费相当多的时间和算力资源。在没有其他外部帮助的情况下,大模型所知道的知识信息总是不完备且滞后的。
2025-02-18
怎么用大模型构建一个属于我自己的助手
以下是用大模型构建属于自己的助手的几种方法: 1. 在网站上构建: 创建百炼应用获取大模型推理 API 服务: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认,也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 2. 微信助手构建: 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 搭建,作为知识库问答系统,将大模型接入用于回答问题,若不接入微信,搭建完成即可使用其问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 3. 基于 COW 框架构建: COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 基于张梦飞同学的更适合小白的使用教程:。 实现功能包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 注意事项: 微信端因非常规使用有封号危险,不建议主力微信号接入。 只探讨操作步骤,请依法合规使用。 大模型生成的内容注意甄别,确保操作符合法律法规要求。 禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏,以防滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法,如本地运行、服务器运行、Docker 的方式。
2025-02-17
怎么让Deepseek可以更好的制定金融发展战略
要让 DeepSeek 更好地制定金融发展战略,可以从以下几个方面考虑: 1. 关注行业动态:密切关注全球金融市场的变化,包括存储芯片、晶圆制造、光刻机等领域的技术发展和市场竞争情况。例如,了解 DDR5 库存积压、超压缩内存技术的应用,以及不同厂商在制程和产能方面的调整。 2. 分析竞争对手:研究竞争对手的策略,如苹果借助阿里模型可能带来的影响,以及国内手机厂商如华为、小米、OPPO、vivo 等的应对措施。 3. 技术创新:持续投入研发,提升自身的技术能力,如实现全流程 AI 决策系统、实时处理 PB 级市场数据、自适应动态风控模型等。 4. 降低成本:在训练模型时控制成本,提高性价比,例如 DeepSeek V3 以较低的训练成本取得较好的性能指标。 5. 考虑合作与联盟:关注行业内的合作机会,如厂商之间共建模型联盟以降低研发成本。 6. 适应市场需求:根据市场需求调整战略,例如针对成熟制程和算法创新的市场需求,优化产线利用率。
2025-02-12
推荐与 AI 会计、AI 金融相关的内容
以下是与 AI 会计、AI 金融相关的内容推荐: 在金融服务业方面,生成式 AI 除了能回答财务问题,还能改进金融服务团队的内部流程,简化财务团队日常工作。例如,它能从更多数据源获取数据,自动化突出趋势、生成预测和报告的过程,包括预测分析的自动化、报告的自动创建、为会计和税务团队提供帮助、协助采购和应付账款工作等。 100 个 AI 应用中,东方财富网投资分析工具是一个 AI 金融投资分析平台,利用数据分析和机器学习技术,分析金融市场数据,为投资者提供投资建议和决策支持。 AI 在金融服务领域的应用场景广泛,包括风控和反欺诈、信用评估、投资分析、客户服务等。例如,通过识别和阻止欺诈行为降低金融机构风险,评估借款人信用风险辅助贷款决策,分析市场数据助力投资者做出明智投资选择,提供 24/7 客户服务并回答常见问题。
2025-02-07
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供定制服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和应对风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者初期使用公开金融数据训练模型,后续会生成自己的数据,并以 AI 作为新产品分销突破口。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供个性化服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和管理风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者起初可能用公开金融数据训练模型,随后会生成自己的数据,并将 AI 作为新产品分销突破口。
2025-02-06
我是一家金融公司,我希望通过ai能力产出抖音短视频内容应该怎么做
以下是金融公司通过 AI 能力产出抖音短视频内容的步骤: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析金融相关内容,提取关键信息、案例和观点。 2. 生成角色与场景描述:根据金融内容,使用工具(如 Stable Diffusion 或 Midjourney)生成相关的角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将金融文本转换为语音,添加合适的背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如剪映 App)将图像、音频和文字合成为视频。 电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,添加文字内容轨道。 将准备好的文字内容替换默认文本内容。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在抖音平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-16
ai金融
以下是关于 AI 金融的相关信息: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了从更好的信贷评估到更精确的基础欺诈评分等一系列改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域,包括金融服务。 生成式人工智能结合对大量非结构化数据的训练和无限计算能力,可能带来金融服务市场数十年来最大的变革。与其他平台转变不同,金融服务行业在此次变革中预计最优秀的新公司和现有企业将立即开始接纳生成式人工智能。 在金融服务中,AI 的应用场景包括: 1. 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答常见问题。 此外,还有一些具体的 AI 金融应用产品,如: 1. AI 金融风险预警平台:利用数据分析和机器学习,提前预警金融风险,如股市下跌、汇率波动等。 2. 小米智能照明系统:利用 AI 和物联网技术,实现家居照明的智能化控制。 希望以上信息对您有所帮助。
2025-01-15