以下是为您整合的关于网商银行产业链金融模型的相关信息:
1.使用金融数据训练LLMs:LLMs目前是在互联网上训练的。金融服务用例将需要使用特定于用例的金融数据来微调这些模型。新进入者可能会开始使用公开的公司财务数据、监管文件和其他易于获取的公开金融数据来优化他们的模型,然后最终在随着时间的推移使用他们自己收集的数据。现有的参与者,如银行或具有金融服务业务的大型平台(例如,Lyft),可以利用他们现有和专有的数据,这可能会给他们带来初步的优势。然而,现有的金融服务公司在接受大型平台转变时往往过于保守。在我们看来,这给了无拖累的新进入者竞争优势。2.模型输出准确性:考虑到金融问题的答案可能对个人、公司和社会产生的影响,这些新的AI模型需要尽可能准确。它们不能产生幻觉或编造错误但听起来自信的答案来回应关于个人税收或财务状况的关键问题,它们需要比流行文化查询或通用高中作文的大致答案更准确。一开始,人类经常会作为AI生成答案的最终验证环节。
我们会给你免费提供一个基础大模型,这个基础大模型是从通用大模型里蒸馏出来的,然后数据工场、知识工场和模型工场是三套开发平台,数据是做数据的治理和标注,知识是从知识管理中间把相应的知识提取出来,既对它来进行知识对齐和知识训练。模型工场是用来用对这个模型进行部署和训练的,再加上Agent应用开发框架,训练出来自己的多个场景化的大模型。这个天津某银行用这个方法我们为它做了一个私有大模型的定制,为它的这个金融需求,拿一个通用大模型训练了几个专用的大模型。
我们会给你免费提供一个基础大模型,这个基础大模型是从通用大模型里蒸馏出来的,然后数据工场、知识工场和模型工场是三套开发平台,数据是做数据的治理和标注,知识是从知识管理中间把相应的知识提取出来,既对它来进行知识对齐和知识训练。模型工场是用来用对这个模型进行部署和训练的,再加上Agent应用开发框架,训练出来自己的多个场景化的大模型。这个天津某银行用这个方法我们为它做了一个私有大模型的定制,为它的这个金融需求,拿一个通用大模型训练了几个专用的大模型。