Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

token与参数的关系

Answer

Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT-3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。

目前使用的大模型存在 token 限制,如 Claude-2-100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT-16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT-4-32k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。

在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。

为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。

Content generated by AI large model, please carefully verify (powered by aily)

References

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

Karpathy:从头开始构建GPT分词器

在这里,它们用颜色明确显示出来:比如,字符串「Tokenization」编码到token30642,其后是token是1634。token「is」(注意,这是三个字符,包括前面的空格,这很重要!)是318。注意使用空格,因为它在字符串中是绝对存在的,必须与所有其他字符一起分词。但为了清晰可见,在可视化时通常会省略。你可以在应用程序底部打开和关闭它的可视化功能。同样,token「at」是379,「the」是262,依此类推。接下来,我们有一个简单的算术例子。在这里,我们看到,分词器对数字的分解可能不一致。比如,数字127是由3个字符组成的token,但数字677是因为有2个token:6(同样,请注意前面的空格)和77。我们依靠LLM来解释这种任意性。它必须在其参数内部和训练过程中,了解这两个token(6和77实际上组合成了数字677)。同样,我们可以看到,如果LLM想要预测这个总和的结果是数字804,它必须在两个时间步长内输出:首先,它必须发出token「8」,然后是token「04」。请注意,所有这些拆分看起来都是完全任意的。在下面的例子中,我们可以看到1275是「12」,然后「75」,6773实际上是三个token「6」、「77」、「3」,而8041是「8」、「041」。(未完待续...)网友在线,出谋划策网友表示,太好了,实际上我更喜欢阅读这些帖子,而不是看视频,更容易把握自己的节奏。还有网友为Karpathy出谋划策:

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

Others are asking
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
在AI生成中,1token大约是多少字符?
在 AI 生成中,对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,通常情况下 1 Token 约等于 1 2 个汉字。在 ChatGPT 4 中,“Learning AI Meticulously,Sharing Knowledge Joyfully”这句话被视为 10 个 Token,标点符号单独计算,“Joyfully”被拆分成“Joy”和“fully”。您可以查看 OpenAI 的分词器工具来了解更多关于文本如何转换为 Token 的信息。
2025-03-18
token是什么
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 token 可能代表一个字、一个词或一个句子。在英文中,一个 token 通常是一个词或标点符号;在一些汉语处理系统中,一个 token 可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 tokens。这些 tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 token 会关联一个预测,这个预测可以是下一个 token 的预测,也可以是该 token 的属性预测,如词性、情感等。 训练 token 的数量会影响模型的性能和准确性。更多的训练 token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 token 也会增加计算的复杂性和计算资源的需求。 很多同学把 token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“token”不仅代表文本数据中的一个单位,而且每个“token”都可能携带了丰富的语义信息。比如,在处理一句话时,“token”可能表示一个字、一个词甚至一个短语,同时,每个“token”在模型中都有一个对应的向量表示,这个向量包含了该“token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。GPT 的输入和输出都是一个个的 token,GPT 适用于几乎所有流行的自然语言,其 token 需要兼容几乎人类的所有自然语言,通过 unicode 编码来实现这个目的。
2025-03-13
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
长token处理
以下是关于长 token 处理的相关信息: 通义千问方面: 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。 在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。 对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 OpenAI API 方面: 模型通过将文本分解为标记(Token)来理解和处理文本,Token 可以是单词,也可以是字符块。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。 给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词),可查看分词器工具了解更多信息。
2025-03-07
Claude3/grok3/Gemini使用API调用时消耗token的价格是?
Claude 3 的 API 调用价格为:每百万输入 token 0.25 美元,每百万输出 token 1.25 美元。可以处理和分析 400 起最高法院案件或 2500 张图片只需 1 美元。相关链接:https://x.com/imxiaohu/status/1768284259792691366?s=20
2025-02-27
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
大模型的temperature参数是什么
大模型中的 temperature 参数用于控制模型输出的随机性。具体来说: 当 temperature 参数值较小时,模型会返回更确定的结果。 调高 temperature 参数值,模型可能会返回更随机的结果,带来更多样化或更具创造性的产出。 在实际应用中,对于质量保障(QA)等任务,可设置更低的 temperature 值,促使模型基于事实返回更真实和简洁的结果。 对于诗歌生成或其他创造性任务,可以适当调高 temperature 参数值。 同时,一般建议在调整参数时,改变 Temperature 和 Top P 其中一个参数就行,不用两个都调整。
2025-04-09
怎么搭建扣子智能体提取抖音文案并进行改写用到哪些插件,并给我配置参数与步骤图
以下是搭建扣子智能体提取抖音文案并进行改写所需的插件、配置参数及步骤: 1. 插件搭建: 点击个人空间,选择插件,点击创建插件。 插件名称:使用中文,根据需求起名。 插件描述:说明插件的用途和使用方法。 插件工具创建方式:选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具,填写工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以“/”开始,若使用 path 方式传参,用“{}”包裹变量)、请求方法等,结束后点击保存并继续。 2. 配置输入参数: 点击新增参数,填写所有需要使用的参数,保存并继续。 3. 配置输出参数: 如果一切填写正确,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 填入汉字“张”,点击自动解析。 解析成功后显示解析成功,可看到输出参数已填好,然后点击保存并继续。 4. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,安仔使用 Coze 免费创建 24 小时英语陪练的步骤包括: 1. 打开扣子首页,点击左上角创建 AI Bot 按钮。 2. 在弹窗输入 Bot 相关信息。 3. 设计人设与回复逻辑,根据功能需求设计提示词。 4. 调整模型设置,如改为 20 轮对话记录。 5. 选择使用插件,如英文名言警句、Simple OCR 等。 6. 设置开场白和预置问题。 7. 设置语音,选择亲切的英语音色。
2025-03-18
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
大模型中的参数是什么
大模型中的参数主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。在 LLM 中,由于模型参数非常多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示,所需内存大小为 4 bytes1,500,000,000 = 6GB,更先进的模型如 LLAMA 有 65B 参数,所需内存就需要 260G(这还是在不考虑词汇表的情况下)。因此在进行模型实际部署时,会进行模型的压缩。
2025-03-03
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AIGC和GAI是什么关系
在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 GAI(Generative AI)强调技术。 生成式人工智能技术,是指具有文本、图片、音频、视频等内容生成能力的模型及相关技术。 GenAI 涵盖了 LLM 和 AIGC。 国内官方政策文件使用 GenAI 这个词相对科学。 公众传播一般会混用上述名词,但底层是 Transformer 结构。Transformer 底层是 function loss 损失函数,是一个大参数(千亿级别)的回归方程,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。大语言模型是一个 perfect memory,repeat 曾经出现的内容。
2025-03-31
画数据库关系图,用什么al软件好
以下是一些可以用于画数据库关系图的 AI 软件和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括数据库关系图,用户可通过拖放界面轻松操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如数据库的逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建包括数据库逻辑、功能和部署等多种视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建数据库逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括数据库逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建数据库逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建包括数据库逻辑视图和部署视图等各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建包括数据库逻辑视图和部署视图等多种视图。
2025-03-22
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13