Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

常见GPU卡介绍与比较

Answer

以下是常见 GPU 卡的介绍与比较:

在选择 GPU 作为 AI 基础设施时,需要考虑多个因素:

训练与推理方面:训练大型 Transformer 模型通常需要在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。许多模型在 NVIDIA H100 上最具成本效益,但获取较难且通常需要长期合作承诺。如今,NVIDIA A100 常用于大多数模型训练。对于大型语言模型(LLM)的推理,可能需要 H100 或 A100,而较小的模型如 Stable Diffusion 则对 VRAM 需求较少,初创公司也会使用 A10、A40、A4000、A5000 和 A6000 甚至 RTX 卡。

内存要求方面:大型 LLM 的参数数量众多,无法由单张卡容纳,需要分布到多个卡中。

硬件支持方面:虽然绝大多数工作负载在 NVIDIA 上运行,但也有公司开始尝试其他供应商,如谷歌 TPU 和英特尔的 Gaudi2,但这些供应商面临的挑战是模型性能高度依赖软件优化。

延迟要求方面:对延迟不太敏感的工作负载可使用功能较弱的 GPU 以降低计算成本,而面向用户的应用程序通常需要高端 GPU 卡来提供实时用户体验。

峰值方面:生成式 AI 公司的需求经常急剧上升,在低端 GPU 上处理峰值通常更容易,若流量来自参与度或留存率较低的用户,以牺牲性能为代价使用较低成本资源也有意义。

此外,算力可以理解为计算能力,在电脑中可直接转化为 GPU,显卡就是 GPU,除了 GPU 外,显存也是重要参数。GPU 是一种专门做图像和图形相关运算工作的微处理器,其诞生是为了给 CPU 减负,生产商主要有 NVIDIA 和 ATI。

Content generated by AI large model, please carefully verify (powered by aily)

References

惊人算力成本背后,AI混战下如何选择基础设施?

在其他条件相同的情况下,顶级GPU在几乎所有工作负载上都会表现最佳。然而,正如下表所示,最好的硬件也要昂贵得多。根据具体应用选择合适的GPU可以大大降低成本,也可能使你的商业模式从不可行变为可行。决定要往下走多远——也就是说,确定对你的应用来说最具成本效益的GPU选择——主要是一个技术决策,超出了本文的讨论范围。但我们将在下面分享一些我们认为最重要的选择标准:[heading3]训练与推理:[content]正如我们在上文第一节看到的,训练Transformer模型除了模型权重外,还需要存储8字节的数据用于训练。这意味一个内存12GB的典型高端消费级GPU几乎无法用于训练40亿参数的模型。实际上,训练大型模型是在机器集群上完成的,最好是每台服务器有多个GPU、大量VRAM以及服务器之间的高带宽连接(即使用顶级数据中心GPU构建的集群)。具体来说,许多模型在NVIDIA H100上最具成本效益,但截至今天很难找到在NVIDIA H100上运行的模型,而且通常需要一年以上的长期合作承诺。如今,更多的选择是在NVIDIA A100上运行大多数模型训练,但对于大型集群,仍需要长期承诺。[heading3]内存要求:[content]大型LLM的参数数量太多,任何卡都无法容纳。它们需要分布到多个卡中,并且需要类似于训练的设置。换句话说,即使进行LLM推理,您也可能需要H100或A100。但是较小的模型(例如Stable Diffusion)需要的VRAM要少得多。虽然A100仍然很受欢迎,但我们已经看到初创公司使用A10,A40,A4000,A5000和A6000,甚至RTX卡。

惊人算力成本背后,AI混战下如何选择基础设施?

虽然我们采访过的公司的绝大多数工作负载都在NVIDIA上运行,但也有一些开始尝试其他供应商。最常见的是谷歌TPU,英特尔的Gaudi2似乎也有一些吸引力。这些供应商面临的挑战是,模型的性能往往高度依赖于这些芯片的软件优化是否可用。你可能需要执行PoC才能了解性能。[heading3]延迟要求:[content]一般来说,对延迟不太敏感的工作负载(例如,批处理数据处理或不需要交互式UI响应的应用程序)可以使用功能较弱的GPU。这可以将计算成本降低多达3-4倍(例如,在AWS上将A100与A10进行比较)。另一方面,面向用户的应用程序通常需要高端GPU卡来提供引人入胜的实时用户体验。优化模型是必要的,以使成本降低到可管理的范围。[heading3]峰值:[content]AI技术是如此新颖和令人兴奋,生成式AI公司的需求经常急剧上升,新产品一经发布,请求量每天增加10倍,或者每周持续增长50%,这种情况并不罕见。在低端GPU上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。

你看我这算力如何?(硬件篇)

作者:小鱼干了发布时间:2023-06-30 21:58原文地址:https://mp.weixin.qq.com/s/FTYC4O58xihe6U06B_7x7w微信扫一扫关注该公众号[heading1]算力是什么?[content]算力的字面意思就是计算能力(Computing Power),是随着区块链,AI等概念被反复提及,其实没什么特别的,可以直接转化成GPU就是算力,电脑里的显卡就是GPU,那么算力=显卡可以这样粗暴的理解。哪怕你购买云服务,也是服务商买显卡“租”给你用的意思。而一张显卡除了GPU外,还有一个很重要的参数是显存。GPU:图形处理器(Graphics Processing Unit)又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。CPU:中央处理器(Central Processing Unit)作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。显存:也被叫做帧缓存,它的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。如同计算机的内存一样,显存是用来存储要处理的图形信息的部件。GPU的诞生源自对CPU的减负,使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时GPU所采用的核心技术有硬件T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等,而硬件T&L技术可以说是GPU的标志。GPU的生产商主要有NVIDIA和ATI。

Others are asking
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用游戏用的 GPU 能使运算速度提高 30 倍。 6. 随着 AI 领域的发展而不断发展,例如在训练神经网络方面发挥重要作用。
2025-01-06
常见GPU卡介绍与比较
以下是常见 GPU 卡的介绍与比较: 在 AI 基础设施的考虑因素中,比较 GPU 时需要关注以下几个方面: 训练与推理: 训练 Transformer 模型除了模型权重外,还需要存储 8 字节的数据用于训练。内存 12GB 的典型高端消费级 GPU 几乎无法用于训练 40 亿参数的模型。 训练大型模型通常在机器集群上完成,最好是每台服务器有多个 GPU、大量 VRAM 以及服务器之间的高带宽连接。 许多模型在 NVIDIA H100 上最具成本效益,但截至目前很难找到在 NVIDIA H100 上运行的模型,且通常需要一年以上的长期合作承诺。如今,更多选择在 NVIDIA A100 上运行大多数模型训练,但对于大型集群,仍需要长期承诺。 内存要求: 大型 LLM 的参数数量太多,任何卡都无法容纳,需要分布到多个卡中。 即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10、A40、A4000、A5000 和 A6000,甚至 RTX 卡。 硬件支持: 虽然绝大多数工作负载都在 NVIDIA 上运行,但也有一些公司开始尝试其他供应商,如谷歌 TPU、英特尔的 Gaudi2。 这些供应商面临的挑战是,模型的性能往往高度依赖于芯片的软件优化是否可用,可能需要执行 PoC 才能了解性能。 延迟要求: 对延迟不太敏感的工作负载(如批处理数据处理或不需要交互式 UI 响应的应用程序)可以使用功能较弱的 GPU,能将计算成本降低多达 3 4 倍。 面向用户的应用程序通常需要高端 GPU 卡来提供引人入胜的实时用户体验,优化模型是必要的,以使成本降低到可管理的范围。 峰值: 生成式 AI 公司的需求经常急剧上升,新产品一经发布,请求量每天增加 10 倍,或者每周持续增长 50%的情况并不罕见。 在低端 GPU 上处理这些峰值通常更容易,因为更多的计算节点可能随时可用。如果这种流量来自于参与度较低或留存率较低的用户,那么以牺牲性能为代价使用较低成本的资源也是有意义的。 此外,算力可以直接转化成 GPU,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,显存也是很重要的参数。GPU 的生产商主要有 NVIDIA 和 ATI。GPU 作为一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用 GPU 训练神经网络,能使运算速度提高 30 倍。
2025-01-06
比H200更先进的GPU是什么
目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。 Blackwell B200 GPU 具有以下优势: 1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。 2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。 3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT4 这样的模型。 它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。
2024-12-23
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
gpu算力平台
以下是关于 GPU 算力平台的相关信息: NVIDIA 推出全新 GPU 平台 Blackwell,涵盖与 Hopper 兼容的普通系统和与 Grace CPU 连接的专用系统,提供前所未有的算力,有望突破物理极限,为互联网产业注入新动力。配备第五代 NV Link 的全新 Transformer 引擎速度惊人,新型超算的高速运转离不开早期问题检测和替换机制,数据加密也至关重要。全新的 FP8 格式大幅提升计算速度,NVLink 交换芯片实现所有 GPU 同时全速通信,直接驱动铜技术的突破让系统更加经济实惠。训练一个 1.8 万亿参数的 GPT 模型,Blackwell 相比传统方法优势明显,AWS、GCP、Oracle、微软纷纷为 Blackwell 做好准备。Blackwell 惊人的推理能力是 Hopper 的 30 倍,有望成为未来生成式 AI 的核心引擎。 能耗是模型训练的关键问题,一台由 8 张 A100 GPU 组成的 DGX 服务器性能强劲但能耗惊人,运行一小时消耗约 6.5 度电,包括散热每小时约消耗 13 度电。若有 1000 台这样的服务器同时运行,每天电费达 20 万元。对于大多数 AI 创业公司,大规模购买和部署 GPU 充满风险和挑战,但云服务平台为 AI 公司提供了灵活选择。 英伟达发布统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽,使得万亿参数模型的实时推理速度比上一代产品提高 15 倍。目前,亚马逊、谷歌、微软已成为最新芯片超算的首批用户,亚马逊网络服务将建立一个拥有 20,000 GB200 芯片的服务器集群。
2024-12-14
提示词的常见结构
提示词常见的结构包括以下几种: 1. 视频模型 Vidu 的提示词结构: 基本构成:主体/场景——场景描述——环境描述——艺术风格/媒介。需调整句式和语序,避免主体物过多/复杂、分散的句式描述,避免模糊术语表达,使用流畅准确的口语化措辞,避免过度文学化叙述,丰富、准确和完整的描述以生成特定艺术风格、满足需求的视频。 与画面联想程度的说明:以单帧图像为例,通过具体详实的位置描述/环境描述进行构图,帮助构建画面基本呈现效果;通过艺术风格描述进一步提升效果和氛围,统一画面风格。 2. DALL·E 自动优化提示词结构: 提示词生成指南:强调使用精确、视觉化的描述而非难以捉摸的概念,清晰明确的指示有助于生成高质量图像。 提示词结构:是一个包括媒介、主题、背景、风格特点等多个元素的模板。媒介指定图像应模仿的艺术形式;主题是图像焦点,包括颜色、姿势和视角等;背景描述主题与环境的关系,包括时间、光线方向等;风格特点包括图像的独特艺术特点。还提供了生成图像和提出新想法的具体步骤和要求,默认设置除非另有说明会使用默认宽高比和风格,同时提醒避免使用违反服务条款的词语或概念。 3. Runway 提示词结构: 基本提示:纯文本提示遵循清晰结构,将相机运动、场景和主题的细节划分为单独部分时最有效。非纯文本提示为图片+基本提示词结构,使用输入图像时应专注描述希望在输出中看到的动作,而非图像内容。
2025-01-06
面试AI岗位的,常见面试题
以下是面试 AI 岗位常见的面试题相关内容: 1. 关于 AI 面试官的相关产品: 用友大易 AI 面试产品:具有强大技术底座、高度场景贴合度、招聘全环节集成解决方案、先进防作弊技术和严密数据安全保障,能完成面试、初筛和自动发送面试邀约。 海纳 AI 面试:在线方式自动面试、评估,精准度高达 98%,面试效率提升 5 倍以上,候选人到面率提升最高达 30%。 InterviewAI:在线平台提供面试职位相关问题和 AI 生成的推荐答案,候选人用麦克风回答,会收到评估、建议和得分。使用时需考虑数据安全性和隐私保护问题。 2. 成为“AI 提示词工程师”的岗位技能要求: 市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象集成互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 对于零基础小白,建议找网上教程,看科普类教程,阅读 OpenAI 文档,理解参数作用,推荐练手的 Prompt 工具和相关教程文档。 3. AI 产品案例: 销售:话术总结优缺点、定制销售解决方案。 客服:定制客服话术。 HR:团队绩效管理、面试工具。
2024-12-13
AI在办公领域的常见应用有哪些
以下是 AI 在办公领域的一些常见应用: 1. 腾讯文档分类功能:利用数据分析和机器学习,自动分类办公文件,方便管理,市场规模达数亿美元。 2. WPS Office 中的智能排版、语法检查等功能:借助自然语言处理和机器学习,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 3. 联想设备管理平台:通过数据分析和物联网技术,对企业办公设备进行管理,包括设备状态监测、故障预警、软件更新等,提高设备利用率,市场规模达数亿美元。
2024-11-22
Aigc 常见名词解释
以下是一些 AIGC 常见名词的解释: AIGC:AI generated content,又称为生成式 AI,意为人工智能生成内容。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介众多,包括语言文字类(如 OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM)、语音声音类(如 Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits)、图片美术类(如早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion)。 SD:是 Stable Diffusion 的简称。是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion 是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。SD 的代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 chatGPT:是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。 AI:人工智能(Artificial Intelligence)。 AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。 此外,还有一些相对较难的名词解释: NAI: 咒语:prompts,关键词 施法/吟唱/t2i:Text2Image 魔杖:t2i/i2i 参数 i2i:Image2Image,一般特指全部图片生成 inpaint:i2i 一种 maskredraw,可以局部重绘 ti/emb/炼丹:Train 中的文本反转,一般特指 Embedding 插件 hn/hyper/冶金:hypernetwork,超网络 炸炉:指训练过程中过度拟合,但炸炉前的日志插件可以提取二次训练 废丹:指完全没有训练成功 美学/ext:aesthetic_embeddings,emb 一种,特性是训练飞快,但在生产图片时实时计算。 db/梦展:DreamBooth,目前一种性价比高(可以在极少步数内完成训练)的微调方式,但要求过高 ds:DeepSpeed,微软开发的训练方式,移动不需要的组件到内存来降低显存占用,可使 db 的 vram 需求降到 8g 以下。开发时未考虑 win,目前在 win 有兼容性问题故不可用 8bit/bsb:一般指 Bitsandbyte,一种 8 比特算法,能极大降低 vram 占用,使 16g 可用于训练 db。由于链接库问题,目前/预计未来在 win 不可用
2024-11-08
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
深度介绍一下机器人行业全球top5的企业
很抱歉,目前知识库中没有关于机器人行业全球 top5 企业的相关内容。但据常见的行业报道和分析,以下是一些在机器人领域具有重要影响力的企业: 1. 发那科(Fanuc):在工业机器人领域拥有广泛的产品线和先进的技术。 2. 安川电机(Yaskawa Electric):以高性能的工业机器人和运动控制系统闻名。 3. 库卡(KUKA):提供多种工业机器人解决方案。 4. ABB:在工业自动化和机器人领域具有深厚的技术积累。 5. 史陶比尔(Stäubli):在工业机器人和纺织机械等领域表现出色。 需要注意的是,机器人行业的排名可能会随着时间和市场变化而有所不同。
2025-01-07
请介绍下WaytoAGI
WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。 它涵盖了多个版块,包括 AI 绘画、AI 视频、AI 智能体、AI 3D 等,还通过举办赛事和活动促进大家动手实践,拥有超千万次的访问量,是很多 AI 爱好者知识的源头。 社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。此外,WaytoAGI 还孵化了离谱村这个千人共创项目,让大家学习和接触 AI 更容易、更感兴趣,参与者不分年龄层,都能通过 AI 工具创作出各种作品。 2023 年 4 月 26 日诞生,2024 年的 2050 年是它的生日庆典。打开“waytoagi.com”即可找到社群。
2025-01-05
介绍一个文稿转换成视频的ai工具
以下为您介绍一些文稿转换成视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果您熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 若您想用 AI 把小说做成视频,可参考以下制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-04
请介绍一下deepseek
DeepSeek 是一家低调但引人关注的大模型公司。其发布了 2360 亿参数的 DeepSeekV2 模型,该模型具有以下特点: 由 60 位专家参与的混合开源模型。 在数学、编码和推理方面表现出色。 拥有 236B 参数,其中 21B 在生成过程中被激活。 在 MTBench 上表现优异,中文能力强且性价比高。 关于 DeepSeek 的详细介绍,您可以通过以下链接获取更多信息:https://xiaohu.ai/p/7468 。此外,还有一篇文章《》对其进行了深入报道。
2025-01-04
介绍下 AI aPaaS
AI aPaaS 是指像字节 Coze 这样的工具,本质上是“AIfirst aPaaS”。 “aPaaS”意味着 Bot Builder 这类工具与以往的 aPaaS 相同,实现一个应用所需的不同类型代码,如数据、状态、API 调用、逻辑(工作流、事件系统等)、UI 等,通过不同的可视化工具来实现,像数据库建模、服务插件、节点图工具、拖拽式 UI 搭建工具等。生成的并非新应用的完整代码,而是“配置”,所有创建的“应用”都是 aPaaS 本体这个单一应用读取不同配置的运行结果。Bot Builder 只是针对其中部分类型更换了不同的可视化工具,比如针对“数据”类型用 RAG 工具,对“状态”类型用 Token 缓存等工具、对“工作流逻辑”用 Agent 搭建工具,对“UI”用提示词和卡片配置工具。得到的“应用”一部分作为“配置”存储和运行在 Bot Builder 平台自身,一部分作为“配置”存储和运行在各种 Chatbot 平台(比如 ChatGPT)。 “AIfirst”指的是它们不仅在开发应用时使用 AI 辅助或依赖 AI,开发出来的也是 AI 应用(目前主要形态是各平台上的 chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的 prompt 调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。 像这样的 AI 应用开发平台存在一些问题:aPaaS 这种单一应用的模式,跟内容平台(比如微信公众号、Medium、头条抖音,很多内容平台同样有“开发”需求,比如文章的 HTML 排版和 widget 组合配置,视频中的 AR 效果)、乃至元宇宙平台(比如 Roblox、堡垒之夜、Decentraland、VRChat、元梦之星,这些平台中用户创建的每个 3D 世界,都是应用,传统上都需要专门开发)非常一致或者说一脉相承。缺点是不生成完整、专业的应用代码,跟专业应用开发(包括开发方式、最佳实践、技术生态、抽象积累)割裂,自成体系,重新发明一切,无法灵活深度的混搭和优化。优点是天然趋向把同一个应用在开发阶段的形态和运行阶段的形态统一,类似本帖引用中 Ego 的说法“a game engine that is also a game”,应用自身就是应用开发工具、就是编辑器,开发应用的同时就是在使用应用,开发游戏的时候就是在玩游戏。但 aPaaS 们(含 Bot Builder)显然还远远没实现这种优点,仍然有使用门槛,使用 Bot Builder 过程中的复杂性也远高于使用 Bot。Bot Builder 们只做到“AIfirst”,并没做到“AInative”。引用中的 Ego 是一个“AInative App Builder”的例子,定位是“AInative simulation/game engine and platform”。
2025-01-03
现在有哪些AI做PPT比较好的工具
以下是一些好用的 AI 做 PPT 的工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下工具: 1. 爱设计 2. 闪击 3. Process ON 4. WPS AI 不同工具各有特色和适用场景,您可以根据实际需求选择。
2025-01-07
目前比较好的关于剪辑视频的ai工具有哪些
目前比较好的关于剪辑视频的 AI 工具有以下几种: 1. 剪映:方便之处在于有很多人性化设计以及简单的音效库和小特效,但无法协同工作和导出工程文件,难以实现视频内容的商业化效果。 2. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,能快速实现从文字到画面的转化。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频。 4. Pictory:AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。 5. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. Runway:AI 视频创作工具,能够将文本转化为风格化的视频内容。 7. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务。 此外,还有一些给视频配音效的 AI 工具: 1. Wavel Studio:支持 30 多种语言的配音,音质自然流畅,能自动去除背景噪音和杂音,提供添加字幕和文本叠加层的工具,界面友好且有多种自定义选项。 2. Elai.io:支持 65 多种语言的配音,音色和语调真实,能自动将唇形与语音同步,生成字幕提高视频可访问性,支持多位配音者。 3. Rask AI:支持 130 多种语言的配音,包括稀有和濒危语言,采用先进语音合成技术,音质高保真,提供语音参数自定义和音效添加工具,与多种视频编辑平台和工作流程整合。 4. Notta:提供快速实惠的多语言配音解决方案,保留原声说话风格和细微差别,提供调整语音速度和音调的工具,支持批量处理。 5. Dubverse:支持 60 多种语言的配音,音质接近真人,提供文本转语音和语音克隆功能,提供语音参数自定义和情感添加工具,与多种视频平台和社交媒体渠道整合。 6. Speechify
2025-01-05
有哪些搭建官网比较好用的AI工具吗
以下是一些搭建官网比较好用的 AI 工具: 1. Wix ADI(Artificial Design Intelligence) 网址:https://www.wix.com/ 特点:基于用户提供的信息,自动生成定制化网站;提供多个设计选项和布局,用户可进一步调整和自定义;集成了 SEO 工具和分析功能,帮助优化网站表现。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA(Artificial Intelligence Design Assistant)通过询问用户几个简单问题,快速生成网站;提供直观的拖放编辑器,用户可轻松自定义网站内容和布局;包括多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 Firedrop 的 AI 设计助手,可根据用户指示创建和修改网站设计;提供实时编辑和预览功能,帮助用户随时查看网站效果;包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站的设计和布局;基于内容和用户互动进行优化,提供个性化的网站设计体验;支持多种内容类型,包括博客、商店和画廊等。 5. Zyro 网址:https://zyro.com/ 特点:使用 AI 生成网站内容,包括文本、图像和布局建议;提供 AI 驱动的品牌和标志生成器,帮助创建独特的品牌形象;包含 SEO 和营销工具,帮助提升网站可见性和流量。 6. 10Web 网址:https://10web.io/ 特点:基于 AI 的 WordPress 网站构建工具,可自动生成网站布局和设计;提供一键迁移功能,将现有网站迁移到 10Web 平台;集成的 AI 驱动 SEO 分析和优化工具。 7. Jimdo Dolphin 网址:https://www.jimdo.com/ 特点:Dolphin 是 Jimdo 的 AI 网站构建器,通过询问用户问题来定制网站;提供自动生成的内容和图像,帮助快速启动网站;包含电子商务功能,适合小型企业和在线商店。 8. Site123 网址:https://www.site123.com/ 特点:简单易用的 AI 网站构建工具,适合初学者;提供多种设计模板和布局,用户可快速创建专业网站;包括内置的 SEO 和分析工具,帮助优化网站表现。
2025-01-05
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
海外比较好的图片生成工具
以下是一些海外比较好的图片生成工具: 1. 谷歌图像生成工具: 特点:理解能力强,有使用门槛,不能输入中文,每日免费 500 次,生成速度快,可调整提示词和选项,能根据提示词生成不同风格和复杂程度的图像,随机种子影响生成结果,可提供参考图设置主题场景样式。 2. 纳米搜索反推提示词: 可上传图片让其反推 midjourney 提示词,输出效果好,能调用多种模型,查阅资料也可用,会搜索全网并精选资料,还能看到调用的内容和参考资料。 3. ideogram: 是一个海外生图平台,早期以能够准确生成图片中的文字而出名,目前该平台仍然有大量创作者生成各类创意 Logo,对于英文字母的生成非常友好,也非常方便,输入支持中文。 使用方法:最简单的方法就是直接在首页信息流中找到中意的 Logo 款式,点进去 retry,替换掉提示词中字母的部分。目前支持主流的图片比例,以及输入框下方有一些主流风格可以选择。
2025-01-04