Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在AI生成中,1token大约是多少字符?

Answer

在 AI 生成中,对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,通常情况下 1 Token 约等于 1 - 2 个汉字。在 ChatGPT 4 中,“Learning AI Meticulously,Sharing Knowledge Joyfully”这句话被视为 10 个 Token,标点符号单独计算,“Joyfully”被拆分成“Joy”和“fully”。您可以查看 OpenAI 的分词器工具来了解更多关于文本如何转换为 Token 的信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

快速开始

OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“hello”和“bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

【Token趣闻】AI收费为何要按Token计费?一探究竟!

我们先来看一下,[OpenAI官方关于Token](https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them)的描述:1 token~=4个英文字符1 token~=¾单词100 tokens~=75单词或1-2个句子~=30个Token1段落~=100 tokens1,500单词~=2048 tokens看完啥感觉,懵逼了不?这和孔乙己知道茴有几种写法有啥区别?来来来,感受一下它是咋回事:Learning AI Meticulously,Sharing Knowledge Joyfully猜猜这句话有几个Token?6个单词,那就是6个Token吧?可惜,它不是!在ChatGPT 4里面,它是10个Token,从色块来看,标点符号单独算了,Joyfully被拆分成Joy和fully。

Others are asking
ai婚纱照
以下是为您整理的关于“ai 婚纱照”的相关信息: 摊位方面:有提供 AI 肖像及写真(包括婚纱写真)的摊位,摊位区域为 D,编号为 46,类型为写真。 AI 绘画方面:有多种关于婚纱系的绘画描述,如“haute couture,high fashion,dark blue wedding dress,stardust,stars,glimmer,wedding,dramatic,ultra realistic,volumetric,atmospheric lighting,unreal engine,artgerm,ultra resolution,8k,—ar 9:16uplight”等。 还有开源项目作者 ailm 在 ComfyUI 上搭建的可接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设、无限上下文、永久记忆、无缝联动 SD 绘图等功能。
2025-03-18
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
关于ai输入法
以下是关于 AI 输入法的相关信息: 在 ShowMeAI 周刊 No.14 中提到,最早注意到 AI Keyboard(AI 输入法)是通过 a16z 在 2024 年 8 月发布的榜单。从 11 月末开始,AI 输入法出现得越来越频繁。 FaceMoji 是一款输入法,其 AI 特性包括根据上下文预测 emoji、跨语言实时翻译、智能对话、GIF 智能搜索、智能纠错等,同时具备常规输入法的功能,如自定义皮肤、海量 emoji 和颜文字库等。 Bobble AI 的 AI 功能更有新意,除根据聊天内容推荐 emoji 外,还能创作和推荐个性化的表情包(贴纸),支持智能回复、翻译、总结等,讲笑话是其官方重点强调的功能之一,也支持其他常规功能。 在 AI 智库的月度榜单(10 月)中,百度输入法、MaxAI.me、AnyDoor 等产品在覆盖力方面有不同的表现。
2025-03-18
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
ai作图网站复杂吗?
AI 作图网站的使用复杂程度因人而异。一些网站可能具有较为简单直观的界面和操作流程,而另一些可能相对复杂。 例如,ILLUMINARTY 网站通过对大量图片数据的抓取和分析来鉴别图片是否为 AI 生成,但在测试中可能存在误判。 同时,还有一些专门用于绘制示意图的网站,如 Creately、Whimsical 和 Miro 等。Creately 是在线绘图和协作平台,适合绘制多种图表,具有智能绘图、丰富模板库和实时协作等功能。Whimsical 专注于用户体验和快速绘图,界面直观易上手。Miro 是在线白板平台,结合 AI 功能适用于团队协作和各种示意图绘制,具有无缝协作、丰富模板和工具以及与其他项目管理工具集成等功能。使用这些网站绘制示意图的一般步骤包括选择工具、创建账户、选择模板、添加内容、协作和分享等。 对于 Tusiart 这类工具,文生图的操作流程包括确定主题、选择基础模型 Checkpoint(如麦橘、墨幽的系列模型)、选择 lora、设置 VAE(如 840000)、编写 Prompt 提示词和负向提示词 Negative Prompt(均用英文)、选择采样算法(如 DPM++2M Karras)、确定采样次数(如 30 40 次)以及设置尺寸等。
2025-03-18
token是什么
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 token 可能代表一个字、一个词或一个句子。在英文中,一个 token 通常是一个词或标点符号;在一些汉语处理系统中,一个 token 可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 tokens。这些 tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 token 会关联一个预测,这个预测可以是下一个 token 的预测,也可以是该 token 的属性预测,如词性、情感等。 训练 token 的数量会影响模型的性能和准确性。更多的训练 token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 token 也会增加计算的复杂性和计算资源的需求。 很多同学把 token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“token”不仅代表文本数据中的一个单位,而且每个“token”都可能携带了丰富的语义信息。比如,在处理一句话时,“token”可能表示一个字、一个词甚至一个短语,同时,每个“token”在模型中都有一个对应的向量表示,这个向量包含了该“token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。GPT 的输入和输出都是一个个的 token,GPT 适用于几乎所有流行的自然语言,其 token 需要兼容几乎人类的所有自然语言,通过 unicode 编码来实现这个目的。
2025-03-13
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
长token处理
以下是关于长 token 处理的相关信息: 通义千问方面: 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。 在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。 对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 OpenAI API 方面: 模型通过将文本分解为标记(Token)来理解和处理文本,Token 可以是单词,也可以是字符块。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。 给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词),可查看分词器工具了解更多信息。
2025-03-07
token与参数的关系
Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。 目前使用的大模型存在 token 限制,如 Claude2100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT432k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。 在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。 为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。
2025-03-06
Claude3/grok3/Gemini使用API调用时消耗token的价格是?
Claude 3 的 API 调用价格为:每百万输入 token 0.25 美元,每百万输出 token 1.25 美元。可以处理和分析 400 起最高法院案件或 2500 张图片只需 1 美元。相关链接:https://x.com/imxiaohu/status/1768284259792691366?s=20
2025-02-27
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
实现将字符串'python中的各个字符以ASCII值的形式单独输出。 s= 'python' 1=0 while print ( 1+=1
以下是使用 Python 实现将字符串'python'中的各个字符以 ASCII 值的形式单独输出的代码: ```python s = 'python' i = 0 while i < len: print i += 1 ```
2024-11-20
写一个将16进制转换为字符串的代码
很抱歉,暂时没有关于将 16 进制转换为字符串的代码内容。但通常来说,在大多数编程语言中,您可以使用相应的函数或方法来实现这个功能。以下是一个使用 Python 语言实现的示例代码: ```python def hex_to_str: return bytes.fromhex hex_value = "48656c6c6f" 这是 "Hello" 的 16 进制表示 print ``` 您可以根据您使用的具体编程语言,查找相关的文档和函数来完成这个转换。
2024-09-16
给我推荐一些ai工具 包括图片生成 视频生成
以下是为您推荐的一些 AI 图片生成和视频生成工具: Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 SVD:如果熟悉 Stable Diffusion ,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI ,能将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 Dreamina 即梦:网址:https://dreamina.jianying.com/aitool/home?subTab 不需要🪜,每天有免费额度,注册可用抖音号或手机号。 CognosysAI:自动化 AI agent 工作流,网址:https://www.cognosys.ai/ AI Tools:Creative Image Generators,AI Design,and Writing&Content GenerationUI Goodies:图像生成类工具,网址:https://uigoodies.com/aitools firefly.adobe.com:图像生成类工具。 Runwayml.com:视频生成类工具。 Hume AI:解读情绪的 AI 工具,网址:https://hume.ai/ BoredHumans.com:有趣的 AI 工具。 更多的文生视频的网站可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-03-18
给我推荐回答类ai 软件图片生成类ai软件 与视频生成类ai软件还是音频生成类ai软件
以下是为您推荐的回答类、图片生成类、视频生成类与音频生成类的 AI 软件: 回答类:目前没有明确列举的特定软件。 图片生成类: Stable Diffusion:通过加噪和去噪实现图像的正向扩散和反向还原,应用场景广泛,如带货商品图生成、模特服装展示、海报生成、装修设计等。 视频生成类: Sora(OpenAI):以扩散 Transformer 模型为核心,能够生成长达一分钟的高保真视频。支持文本生成视频、视频生成视频、图像生成视频,在文本理解方面表现出色,还能在单个生成的视频中创建多个镜头,保留角色和视觉风格。 Genie(Google):采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数,可通过单张图像提示生成交互式环境。 Pika:擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 音频生成类: WaveNet(DeepMind):一种生成模型,可以生成非常逼真的人类语音。 MuseNet(OpenAI):一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 Multilingual v2(ElevenLabs):一种语音生成模型,支持 28 种语言的语音合成服务。 更多的文生视频的网站可以查看: 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-18
给我推荐回答类ai 图片生成类ai 与视频生成类ai还是音频生成类ai
以下是为您推荐的各类 AI 生成工具: 回答类 AI:目前有许多语言模型可用于回答问题,如 ChatGPT 等。 图片生成类 AI:Stable Diffusion 是一种生成模型,通过加噪和去噪实现图像的正向扩散和反向还原。 视频生成类 AI:AI 视频生成主要基于特定架构,如基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧来生成视频。 音频生成类 AI:暂未在提供的内容中为您找到相关具体推荐。 同时,多模态大模型能识别页面组件结构和位置绝对值信息,并与组件、文本映射。吉梦 AI 提供 AI 视频生成等能力,吐司平台具备多种 AI 能力,包括模型、在线训练、上传模型工作流等功能,可通过输入提示词生成图片。Meta 的视频生成模型能生成视频和声音,可替换视频中的物体和人脸。
2025-03-18
漫画生成
以下是关于漫画生成的相关信息: Anifusion: 这是一款基于人工智能的在线工具,网址为 https://anifusion.ai/ ,其 Twitter 账号为 https://x.com/anifusion_ai 。 主要功能: 能根据用户输入的文本描述生成相应的漫画页面或动漫图像。 提供预设模板和自定义漫画布局的直观布局工具。 拥有强大的浏览器内画布编辑器,可调整角色姿势、面部细节等。 支持多种 LoRA 模型,实现不同艺术风格和效果。 用户对创作作品拥有完整商业使用权。 使用案例: 独立漫画创作。 快速原型设计。 教育内容创作。 营销材料制作。 粉丝艺术和同人志创作。 优点:非艺术家也能轻松创作漫画,基于浏览器无需安装额外软件,具备快速迭代和原型设计能力,并拥有创作的全部商业权利。 北大团队提出「自定义漫画生成」框架 DiffSensei: 故事可视化是从文本描述创建视觉叙事的任务,现有文本到图像生成模型存在对角色外观和互动控制不足的问题,尤其是在多角色场景中。 北大团队提出新任务“自定义漫画生成”及 DiffSensei 框架,该框架集成了基于扩散的图像生成器和多模态大语言模型(MLLM),采用掩码交叉注意力技术,可无缝整合字符特征实现精确布局控制,基于 MLLM 的适配器能调整角色特征与特定面板文本线索一致。 还提出 MangaZero 数据集,包含大量漫画和注释面板。 论文链接:https://arxiv.org/abs/2412.07589 ,项目地址:https://jianzongwu.github.io/projects/diffsensei/ 。 Niji V5 漫画生成: 漫画是起源于日本的流行艺术形式,有多种类型。 提供了一些漫画生成的提示示例,如“John Wick,漫画屏幕色调,屏幕色调图案,圆点图案,更大且间距更宽的点,高质量—ar 3:2—niji 5”等。 指出在 Niji Version 5 中能看到更多细节,尤其是面部表情,还可使用/describe 命令向 Midjourney 询问喜欢的动漫场景灵感,新的 MidJourney 命令—Image2Text 可生成准确描述图像的文本提示。
2025-03-18
生成论文
以下是关于生成论文的相关内容: 生成调研报告的步骤和经验: 1. 确定调研报告的大纲目录:可利用老师提供的示例报告截图并用手机识别。 2. 确定整体的语言风格和特色:调研报告语言风格一般是“逻辑清晰,层层递进,条理分明”,可将范文交给 Claude 2 总结语言风格。 3. 让 GPT4 生成章节内容:在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一部分,否则重新生成。注意不要过于限制 GPT4,否则效果不佳。 4. 处理章节信息搜索:生成内容前需 GPT4 判断某章节是否调用 webpolit 插件查询相关信息。此部分较难,迭代时间长,可在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息后生成内容。 相关新闻: 1. Sakana AI 用 AI Scientistv2 模型生成的论文通过 ICLR 2025 双盲评审,但主动撤回论文,呼吁学术界先制定 AI 论文规范。 2. 越来越多的 PPT 由 AI 生成,内容与实际工作脱节,汇报成了“敷衍应付”,建议限制 PPT 只在成果汇报时使用,不再作为提案主工具。
2025-03-18
如何生成图片
以下是几种生成图片的方法: 1. 通过 MJ 应用为 PPT 配图: 复制图片网址,打开 discord,在聊天栏输入“/imagine prompt”。 回到官网复制图像的提示词,粘贴到 discord 中网址后面并空格。 输入命令生成图像,若效果不理想可多反复生成几次。 放大觉得不错的图,可通过 Custom Zoom 改变比例和镜头拉远,如将“ar”参数后的数值改成 16:9,“zoom”参数设置为 1.5 到 1.7。 检查构图,若不理想可在当前图基础上再用一次 Zoom Out 1.5x。 2. 使用 PS Beta 版本的 Firefly Image 3 模型: 生成填充由 Adobe Firefly Image 3 模型提供支持,可提高摄影质量、精确控制输出、更好理解复杂描述和生成多样结果。 可使用参考图像生成变体,上传参考图像以指导创意工作流程并生成更相关和定制的变体,还可与描述性文本提示配对控制生成结果。 包括调整画笔、生成类似内容、生成背景、增强细节等功能。 3. 使用 LayerStyle 副本的 LayerUtility 中的 TextImage: 从文字生成图片以及遮罩,支持字间距、行间距调整,横排竖排调整,可设置文字的随机变化,包括大小和位置的随机变化。 节点选项包括 size_as、font_file、spacing、leading、horizontal_border、vertical_border、scale、variation_range、variation_seed、layout、width、height、text_color、background_color 等。
2025-03-18