Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在AI生成中,1token大约是多少字符?

Answer

在 AI 生成中,对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,通常情况下 1 Token 约等于 1 - 2 个汉字。在 ChatGPT 4 中,“Learning AI Meticulously,Sharing Knowledge Joyfully”这句话被视为 10 个 Token,标点符号单独计算,“Joyfully”被拆分成“Joy”和“fully”。您可以查看 OpenAI 的分词器工具来了解更多关于文本如何转换为 Token 的信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

快速开始

OpenAI API可以应用于几乎所有涉及生成自然语言、代码或图像的任务。我们提供了一系列不同能力级别的[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o),适用于不同任务的,并且能够[微调(Fine-tune)](https://ywh1bkansf.feishu.cn/wiki/ATYCwS5RRibGXNkvoC4ckddLnLf)您自己的自定义模型。这些模型可以用于从内容生成到语义搜索和分类的所有领域。[heading2]提示词Prompts[content]设计提示词本质上就是对模型进行“编程”,这通常是通过提供一些指令或几个示例来完成。这与大多数其他NLP服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,补全(Completions)和聊天补全(Chat Completions)几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。[heading2]标记Token[content]我们的模型通过将文本分解为标记(Token)来理解和处理文本。Token可以是单词,也可以是字符块。例如,单词“hamburger”被分解成标记“ham”、“bur”和“ger”,而很短且常见的单词像“pear”是一个Token。许多Token以空格开头,例如“hello”和“bye”。在给定的API请求中处理的Token数量取决于您的输入和输出长度。作为一个粗略的经验法则,对于英文文本,1个Token大约相当于4个字符或0.75个单词。要记住的一个限制是,您的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是2048个Token,或大约1500个单词)。可以查看我们的[分词器工具](https://platform.openai.com/tokenizer)来了解有关文本如何转换为Token的更多信息。

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

【Token趣闻】AI收费为何要按Token计费?一探究竟!

我们先来看一下,[OpenAI官方关于Token](https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them)的描述:1 token~=4个英文字符1 token~=¾单词100 tokens~=75单词或1-2个句子~=30个Token1段落~=100 tokens1,500单词~=2048 tokens看完啥感觉,懵逼了不?这和孔乙己知道茴有几种写法有啥区别?来来来,感受一下它是咋回事:Learning AI Meticulously,Sharing Knowledge Joyfully猜猜这句话有几个Token?6个单词,那就是6个Token吧?可惜,它不是!在ChatGPT 4里面,它是10个Token,从色块来看,标点符号单独算了,Joyfully被拆分成Joy和fully。

Others are asking
有没有AI制作视频的教学
以下为您提供一些 AI 制作视频的教学: 1. 五步学会用 AI 制作动画视频播客: 适合有一定技术基础的朋友,轻松上手创作动画视频。 参考链接: 2. Hailuo AI 推出 I2V01Live 新功能: 让静态 2D 插画“活”起来,为 2D 插画加入流畅动画,赋予角色生命力。 多风格支持,适配漫画、卡通等多种艺术风格,创作更自由。 细腻自然,捕捉细微动作细节,表情、眨眼等表现更加真实流畅。 参考链接: 3. 腾讯 Hunyuan:130 亿参数开源视频模型: 高质量视频生成,动作连贯自然,镜头切换灵活。 具备强大语义跟随能力,适配新一代语言模型作为文本编码器。 采用类似 Sora 的 DiT 架构,显著提升影视级动态表现力。 参考链接: 4. AI 特效挑战 001 杯子里的鲸鱼: 选用的视频制作工具可自行选择,这里以可灵 AI 为例为您演示。 打开可灵 AI ,[https://klingai.kuaishou.com/ ,点击图生视频,上传第一张图片。 输入提示词时一定需要加固定镜头,这很重要,否则画面推进或者拉远了后面制作会存在问题。 参考视频:
2025-04-15
知识库收录了多少种ai知识
目前的知识库涵盖了人工智能的多方面知识,包括但不限于以下内容: 1. 人工智能简史、AI 会话简史等基础知识。 2. 10 篇精选文章助于理解 AI。 3. 重要人物介绍和名词解释。 4. 推荐了相关书籍、电影。 5. 介绍了大模型的发展历程,包括其组成、三大基石(数据、算法、算力)以及早期的数据合规问题。 6. 包含 AI 音乐创作、数字人语音合成、config UI 的应用等技术应用方面的内容。 7. 社区共创项目,如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 但关于知识库具体收录的知识种类数量,并未有明确的直接说明。
2025-04-15
如何利用ai搭建论文框架
利用 AI 搭建论文框架可以参考以下步骤和工具: 步骤: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:运用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析(若涉及):使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:通过 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。 常用工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 此外,还有一些关于 AI 技术原理和框架的相关知识: 1. 思维链:谷歌在 2022 年的一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力,即使不用小样本提示,也可以在问题后面加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,比如对于语言模型的计算问题,核心在于不让 AI 直接生成计算结果,而是借助其他工具比如 Python 解释器作为计算工具。 4. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。
2025-04-15
如何用AI,基于直播音频,生成内容思维导图?
以下是基于直播音频生成内容思维导图的一些方法和相关资源: 1. 利用 GPT 进行多种应用,如内容生成(文章、故事、诗歌、歌词等)、聊天机器人、问答系统、文本摘要、机器翻译、群聊总结、代码生成、教育、浏览器插件、PDF 对话等。相关演示和资源包括:https://chat.openai.com/、https://bard.google.com/extensions、https://claude.ai/、 等。 2. 可以使用专门的工具和平台,如 https://bibigpt.co/r/AJ 进行音视频提取总结,https://podwise.xyz/dashboard/trending 进行播客总结,https://xmind.ai/editor/ 生成脑图。 3. 火山引擎上线的“大模型应用实验室”平台提供的企业级模板,可实现输入故事主题后全自动生成故事、分镜、人物图片、视频、音频,并自动剪辑。 4. 通义听悟可用于处理语音与视频,如将直播回放的 mp4 文件上传,快速定位内容,生成总结和笔记,也适用于其他线上或线下分享。
2025-04-15
最近的ai趋势
以下是最近的 AI 趋势: 1. 技术创新方面: 大模型创新:架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化:推理能力成为关键,推动计算和数据变革。 AGI 探索:视频生成引发关注,空间智能统一虚拟和现实。 2. 应用格局方面: 第一轮洗牌结束,聚焦 20 赛道 5 大场景。 多领域竞速,运营重要性大于技术,AI 助手竞争激烈。 AI+X 赋能类产品发展迅速,原生 AI 爆款难求。 多模态上马,Agent 席卷一切,高度个性化需求凸显。 变革生产力,重塑行业生态。 行业渗透率受数据基础和用户需求影响。 3. 产品设计和商业化方面: 从通用能力向专业化细分发展,如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理等领域不断提升核心能力。 商业模式不断创新,如 ToB 市场深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)。 4. 行业大事记方面: 模型领域,DeepSeek 开源 R1 模型将大模型行业推进到推理时代,引发全球影响。 图像模型整体往更快、更便宜方向发展,AI 图像生成成为常用生产力工具。 视频模型底层架构无大变化,在细节优化上,如视频音效生成逐渐成为标配。
2025-04-15
AI如何促进企业增长,该从哪些层面入手
以下是关于 AI 促进企业增长及入手层面的相关内容: 1. 从宏观环境来看: 2024 年,AI 已在多个领域取得显著进展,其在推进人类知识方面的作用得到认可,如在物理学、化学的诺贝尔奖及图灵奖中有所体现。同时,企业对 AI 的投资在经历短暂放缓后反弹,新成立的生成式 AI 初创公司数量大幅增加,AI 已从边缘位置成为企业价值的核心驱动因素。 各国政府也在加大对 AI 的投入,出台相关政策和举措,推动 AI 发展。 2. 从监管层面来看: 适当的监管能激励企业在解决重要问题的同时控制风险,从而增加创新。例如,产品安全立法促进了更安全产品和服务的创新。 应采取基于情境、适度的监管方法,平衡风险与机会、效益,增强公众信任,促进 AI 应用。 3. 从企业自身来看: 启动试点项目以获取动能,选择易成功而非最具价值的项目,在 6 12 个月内展示成效,项目可内部或外包进行。 建立公司内部的 AI 团队,搭建集中统一的团队并选派人员协助各业务部门,方便统一管理。 构建全公司范围的平台,如软件平台、工具或数据基础设施,单个部门可能缺乏权限和资源完成此类平台建设。 提供广泛的 AI 培训,包括高层了解 AI 策略和资源分配,部门领导掌握项目方向设置、资源分配与进度监控,培养内部工程师开展相关工作。 制定 AI 策略,结合自身业务深度了解后制定,设置与 AI 良性循环一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,包括战略数据采集、构建统一数据仓库等。
2025-04-15
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
token是什么
在大语言模型领域,Token 通常用来表示文本数据中的一个单元。在不同语境下,一个 token 可能代表一个字、一个词或一个句子。在英文中,一个 token 通常是一个词或标点符号;在一些汉语处理系统中,一个 token 可能是一个字或一个词。Token 是处理和理解文本数据的基本单元。 在深度学习的语言模型中,如 Transformer,输入的文本首先被切分成一系列的 tokens。这些 tokens 被转换成向量,然后被输入到神经网络中进行处理。因此,在这种情况下,token 可以被理解为语言模型接收和处理的最小的信息单元。在训练过程中,每个 token 会关联一个预测,这个预测可以是下一个 token 的预测,也可以是该 token 的属性预测,如词性、情感等。 训练 token 的数量会影响模型的性能和准确性。更多的训练 token 通常意味着更多的训练数据,这可能会提升模型的准确性和泛化能力。然而,处理更多的 token 也会增加计算的复杂性和计算资源的需求。 很多同学把 token 理解为中文语义里的“字节”,这种理解有一定相似度,因为“字节”是计算机存储和处理数据的基本单元,而“token”是语言模型处理文本信息的基本单元。但这种理解不够准确,“Token”在语言模型中的作用比“字节”在计算机中的作用更加复杂和多元。在大语言模型中,“token”不仅代表文本数据中的一个单位,而且每个“token”都可能携带了丰富的语义信息。比如,在处理一句话时,“token”可能表示一个字、一个词甚至一个短语,同时,每个“token”在模型中都有一个对应的向量表示,这个向量包含了该“token”的语义信息、句法信息等。 Unicode 是一种在计算机上使用的字符编码,为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。GPT 实际是将我们输入的文字转换成 token,然后通过 GPT 模型预测 token,再将 token 转换成文字,最后再输出给我们。GPT 的输入和输出都是一个个的 token,GPT 适用于几乎所有流行的自然语言,其 token 需要兼容几乎人类的所有自然语言,通过 unicode 编码来实现这个目的。
2025-03-13
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
长token处理
以下是关于长 token 处理的相关信息: 通义千问方面: 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。 在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。 对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 OpenAI API 方面: 模型通过将文本分解为标记(Token)来理解和处理文本,Token 可以是单词,也可以是字符块。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。 给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词),可查看分词器工具了解更多信息。
2025-03-07
token与参数的关系
Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。 目前使用的大模型存在 token 限制,如 Claude2100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT432k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。 在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。 为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。
2025-03-06
Claude3/grok3/Gemini使用API调用时消耗token的价格是?
Claude 3 的 API 调用价格为:每百万输入 token 0.25 美元,每百万输出 token 1.25 美元。可以处理和分析 400 起最高法院案件或 2500 张图片只需 1 美元。相关链接:https://x.com/imxiaohu/status/1768284259792691366?s=20
2025-02-27
计算两个时间差的绝对值,输出相差的完整天数。 获得用户输入的两个与时间相关的字符串,两个时间用逗号分隔,每个时间字符串格式示例如下:2018年08月01日17点21分21秒。 以此为要求写出python代码
以下是计算两个指定格式时间差的绝对值并输出相差完整天数的 Python 代码: ```python import datetime def calculate_days_difference: 解析时间字符串 time1 = datetime.datetime.strptime time2 = datetime.datetime.strptime 计算时间差 time_difference = abs 转换为天数并返回 return time_difference.days 示例用法 time1_str = "2023年08月01日17点21分21秒" time2_str = "2023年08月10日17点21分21秒" print ```
2025-03-22
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
实现将字符串'python中的各个字符以ASCII值的形式单独输出。 s= 'python' 1=0 while print ( 1+=1
以下是使用 Python 实现将字符串'python'中的各个字符以 ASCII 值的形式单独输出的代码: ```python s = 'python' i = 0 while i < len: print i += 1 ```
2024-11-20
写一个将16进制转换为字符串的代码
很抱歉,暂时没有关于将 16 进制转换为字符串的代码内容。但通常来说,在大多数编程语言中,您可以使用相应的函数或方法来实现这个功能。以下是一个使用 Python 语言实现的示例代码: ```python def hex_to_str: return bytes.fromhex hex_value = "48656c6c6f" 这是 "Hello" 的 16 进制表示 print ``` 您可以根据您使用的具体编程语言,查找相关的文档和函数来完成这个转换。
2024-09-16
生成一份给deepseek的身份提示词,让他帮助我写一份简历
以下是为您生成的给 DeepSeek 的身份提示词,以帮助您写一份简历: 1. 请为我生成一份能够突出我专业技能和工作经验的简历,重点展现我在领域的成就和能力。 2. 帮我撰写一份简历,要体现我丰富的项目经历和解决问题的能力,格式清晰、语言简洁。 3. 为我创作一份简历,突出我的教育背景、所获荣誉以及与目标职位相关的关键技能。 4. 请以吸引人的方式为我生成一份简历,强调我的职业发展历程和对未来工作的规划。 5. 帮我构思一份简历,要包含我在不同工作岗位上的职责和取得的业绩,突出我的个人优势和职业潜力。
2025-04-15
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14