Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在的AI分几类

Answer

目前,AI 主要分为以下几类:

  1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
  2. 推理者(Reasoners):具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。
  3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。
  4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。
  5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,包括规划、执行、反馈、迭代、资源分配和管理等。

此外,AI 还包括弱人工智能(ANI),如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,这类 AI 只可做一件事。而通用人工智能(AGI)则是能够做任何人类可以做的事。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

Others are asking
小白如何0基础学Ai
对于 0 基础学习 AI 的小白,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 岗位技能要求: 对于“AI 提示词工程师”岗位,需要具备市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发等综合能力。 7. 学习资源: 对于 0 基础小白,可在网上找教程,推荐看科普类教程,阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 推荐一些练手的 Prompt 工具和相关教程文档。 8. 学习模式和注意事项: 可以参考《雪梅 May 的 AI 学习日记》,采用输入→模仿→自发创造的学习模式。 注意学习内容可能因 AI 发展迅速而过时,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。 学习时间可灵活安排,学习资源大多免费开源。
2025-01-06
我先系统了解AIGC 行业
以下是关于 AIGC 行业的系统介绍: AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的发展历程可以从内容生产方式的演变来了解。在互联网发展过程中,内容生产方式经历了从 PGC(ProfessionalGenerated Content,专业生成内容)到 UGC(UserGenerated Content,用户生成内容),再到 AIGC 的转变。 在 Web1.0 时代,互联网内容生产以 PGC 为主,由专家和专业机构生产高质量内容,如雅虎、IMDb 等。PGC 的优势在于专业性和易变现,但存在创作门槛高、产量不足等挑战。 随着互联网发展和用户需求多样化,Web 2.0 时代到来,用户参与内容创作,UGC 成为主流。UGC 内容多样、个性化,通过推荐系统满足用户需求,降低了专业门槛,促进了互联网的民主化和个性化内容创作。 在当前,国内 AIGC 行业主要在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管。 此外,还有一些具体的应用案例,如 Collov 是来自美国硅谷的家居垂直行业 AIGC 工具,专注于利用人工智能技术来实现空间设计与家具营销二合一,打通供应链,为企业提高更低成本、更智能高效的空间设计与家具营销解决方案。它能够完成人类设计师以及高美感内容的视觉理解、推理和生成任务,并将生成技术服务于家装、工装、建筑、具身智能机器人、智能驾驶等多领域的商业场景,替代传统人工设计和采集流程。AI 技术的应用显著提高了设计和营销的效率,减少了对传统人工的依赖,增强了客户的交付满意度,提升了企业的市场竞争力。
2025-01-06
给我推荐一个快速读电子书的AI工具
以下为您推荐一些快速读电子书的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如果用AI来画流程图、结构图的话,应该用哪款产品?
以下是一些可以用于使用 AI 来画流程图、结构图的产品: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等,AI 功能可帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
如何学习AI
以下是关于新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于中学生学习 AI 的补充建议: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在教育、医疗、金融等领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-06
我想要学AI视频,我应该怎么做
以下是学习 AI 视频的一些建议和资源: 1. 入门教程: 您可以查看。 学习。 2. 交流群: 如需学习 AI 视频、参与 AI 视频挑战赛或参与 AI 视频提示词共创,可直接扫二维码或联系三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群,请勿随便申请好友。 3. 直播: AI 视频学社每周 1 次直播(周五直播),例如。 4. 实践建议: 从简单创作开始,如生成零散视频片段或图片进行混剪,选用现成音乐并根据节奏简单剪辑,顺道学习主流创意软件操作。 在成功产出简单作品后,尝试完成更完整的工作流,比如:选题→剧本→分镜描述→文生图→图生视频→配音配乐→剪辑后期。 此外,在 AI 视频学社,小伙伴们可以通过参与每周举办的比赛快速学习相关知识,每周有高手直播分享前沿知识,不定期组织线上或线下活动,大家一起学习最新软件和知识,学习图生视频、视频生视频等技巧。
2025-01-06
AI一共有几类产品
AI 产品主要分为以下几类: To C 领域: 主打 AI 角色扮演赛道的产品,例如“猫箱”“剧本戏”“名人朋友圈”等,在 LLM 基础上,在 prompt 上加了些特定角色定义。 主打 AI 陪伴类的产品,例如“星野”“Talkie”“BubblePal”等,在 LLM 基础上,在 prompt 上加了些特定角色定义,且会在长短记忆上做出处理,以突出陪伴意义。 做 AI 搜索工具的产品,例如“秘塔”“360 搜索”等,有些会在搜索内容基础上,把内容结构化,整出一个图谱或者脑图。 单纯的做 AIGC 的产品,例如“可灵”“ai 写作手”“即梦”“md”等,借助 AI 的生成能力做出。 Agent 产品,目前只有头部的厂商在做,比如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。 To B 领域: 智能办公,价值点主要体现在办公垂域场景中,比如快速总结群聊内容或会议信息,给出公文写作的结构模板参考等。 智能客服,通常借助 agent 来实现,接入企业的 QA 知识库,对用户的信息予以回应,并依据用户的回答下达诸如取消订单、催快递之类的 action 指令。 AI 导购,在用户和商家之间发挥作用,能够依据用户的问题,结合产品的介绍和评论信息等,为用户推荐更为准确、精准的产品。 智能营销。 此外,4 月动态中还提到了 78 个 AI 新产品,包括 15 个初创企业的新产品(从开源和闭源角度划分)、39 个有用的和 10 个好玩的新产品(有用的部分从通用场景及垂直场景划分,还单列了诸如模型训练、AI 安全、代码学习和 AI 代理等关注度较高的类别)、14 个大公司的新产品(如微软、谷歌、英伟达、苹果、Palantir 等)。
2024-08-26
现在国内可用的医学大模型有哪些
目前国内可用的医学大模型有以下这些: 1. 8 月正式上线的部分大模型: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 2. LLM 开源中文大语言模型及数据集集合中的医学大模型: XrayGLM,首个会看胸部 X 光片的中文多模态医学大模型: 地址:https://github.com/WangRongsheng/XrayGLM MeChat,中文心理健康支持对话大模型: 地址:https://github.com/qiuhuachuan/smile MedicalGPT 地址:https://github.com/shibing624/MedicalGPT 此外,大模型在医疗行业的应用主要涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向,例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin 等案例充分展示了其在医疗领域的巨大潜力,目前很多医疗研究机构都在进行医疗大模型的开发研究。
2025-01-06
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
科学家现在完全了解gpt是怎么工作的吗
目前科学家尚未完全了解 GPT 的工作原理。以下是一些关于 GPT 工作原理的相关知识: Openai 的科学家认为,GPT 产生智能是因为神经网络将知识进行了复杂的压缩,在询问问题时将其中的知识解码(解压缩)。大语言模型的数据压缩能力越强,意味着其 AGI 智能越强。遵循最小描述长度原理和奥卡姆剃刀原则,最佳解释应是对数据进行尽可能短而准确描述的模型,模型描述长度越短,泛化性越好,也就越智能。 GPT 中的知识存在方式包括:LLM 中有两类神经元,单语义神经元只对输入里某个特殊的知识点产生响应,多语义神经元则相反。在模型学习过程中,为了增加模型参数的利用效率,“单语义神经元”会被分配给重要特征,“多语义神经元”会分配给不太重要的特征,而对更加不重要的特征,模型完全不进行编码。此外,存在知识回路,某个任务的 Prompt 输入 Transformer 后,在网络中存在一些完成这个任务的关键路径,信息主要沿着这条路径向上传播,在传播过程中不断进行信息传递或知识加工,最终完成任务,这与人脑的某些信息处理回路相似。 GPT3 的训练是将模型暴露于大量文本的过程,包含 3000 亿个文本标记的数据集用于生成模型的训练示例。训练时,我们只向模型展示特征并要求它预测下一个单词,模型的预测会有错误,计算其预测中的误差并更新模型,以便下次做出更好的预测,重复数百万次。GPT3 实际上一次生成一个 token 的输出。 GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer)。生成式指的是大模型根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。例如,一开始给大模型一些提示词 Prompt,大模型会结合自身“大脑中存储的知识”进行计算推理,算出下一个单词的概率最大并输出,新的输出会和过去的输入一并成为新的输入,用来计算下一个词,直到计算出下一个词是的概率最大,于是结束输出。
2024-12-31
我现在想学习使用AI知识应用在生活知及工作上,请计划一下我应该怎么学习
以下是为您制定的学习将 AI 知识应用在生活及工作中的计划: 一、了解 AI 基本概念 1. 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。了解 AI 的历史、当前的应用和未来的发展趋势。 2. 建议阅读「」部分。 二、学习编程语言 从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 三、尝试使用 AI 工具和平台 1. 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 2. 探索一些面向大众的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 四、学习 AI 基础知识 1. 深入了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 2. 学习 AI 在教育、医疗、金融等领域的应用案例。 五、参与 AI 相关的实践项目 1. 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 2. 尝试利用 AI 技术解决生活和工作中的实际问题,培养动手能力。 六、选择感兴趣的模块深入学习 AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习,比如图像、音乐、视频等。同时,一定要掌握提示词的技巧,它上手容易且很有用。 七、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 八、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 九、利用 AI 辅助学习 1. 英语学习: 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错。 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正。 使用自适应学习平台(如 Duolingo)获取个性化的学习计划和内容。 利用智能对话机器人(如 ChatGPT)进行英语会话练习。 2. 数学学习: 使用自适应学习系统(如 Khan Academy)获取个性化的学习路径和练习题。 利用智能题库和作业辅助工具(如 Photomath)获取数学问题的解答和解题步骤。 使用虚拟教学助手(如 Socratic)解答数学问题、获取教学视频和答疑服务。 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并将 AI 知识应用到生活和工作中。
2024-12-30
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29