Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我现在想学习使用AI知识应用在生活知及工作上,请计划一下我应该怎么学习

Answer

以下是为您制定的学习将 AI 知识应用在生活及工作中的计划:

一、了解 AI 基本概念

  1. 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 建议阅读「从这里启程」部分。

二、学习编程语言

从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。

三、尝试使用 AI 工具和平台

  1. 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
  2. 探索一些面向大众的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。

四、学习 AI 基础知识

  1. 深入了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
  2. 学习 AI 在教育、医疗、金融等领域的应用案例。

五、参与 AI 相关的实践项目

  1. 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
  2. 尝试利用 AI 技术解决生活和工作中的实际问题,培养动手能力。

六、选择感兴趣的模块深入学习

AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习,比如图像、音乐、视频等。同时,一定要掌握提示词的技巧,它上手容易且很有用。

七、实践和尝试

理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。

八、体验 AI 产品

与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

九、利用 AI 辅助学习

  1. 英语学习:

    • 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错。
    • 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正。
    • 使用自适应学习平台(如 Duolingo)获取个性化的学习计划和内容。
    • 利用智能对话机器人(如 ChatGPT)进行英语会话练习。
  2. 数学学习:

    • 使用自适应学习系统(如 Khan Academy)获取个性化的学习路径和练习题。
    • 利用智能题库和作业辅助工具(如 Photomath)获取数学问题的解答和解题步骤。
    • 使用虚拟教学助手(如 Socratic)解答数学问题、获取教学视频和答疑服务。
    • 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目。

通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行学习,并将 AI 知识应用到生活和工作中。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:如何用 AI 进行英语学习和数学学习

使用AI进行英语学习和数学学习可以带来许多好处,以下是一些方法和建议:[heading3]英语学习:[content]1.智能辅助工具:利用AI写作助手(如Grammarly)进行英语写作和语法纠错,帮助您改进英语表达和写作能力。2.语音识别和发音练习:使用语音识别应用(如Call Annie)进行口语练习和发音纠正,让AI提供实时反馈和建议。3.自适应学习平台:使用自适应学习平台(如Duolingo)利用AI技术为您量身定制学习计划,提供个性化的英语学习内容和练习。4.智能导师和对话机器人:利用智能对话机器人(如ChatGPT)进行英语会话练习和对话模拟,提高您的交流能力和语感。[heading3]数学学习:[content]1.自适应学习系统:使用自适应学习系统(如Khan Academy)结合AI技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。2.智能题库和作业辅助:利用智能题库和作业辅助工具(如Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。3.虚拟教学助手:使用虚拟教学助手(如Socratic)利用AI技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。4.交互式学习平台:参与交互式学习平台(如Wolfram Alpha)的数学学习课程和实践项目,利用AI技术进行数学建模和问题求解。通过结合AI技术和传统学习方法,您可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。内容由AI大模型生成,请仔细甄别。

Others are asking
有哪些AI数字人口播工具?
以下是一些常见的 AI 数字人口播工具: 1. TecCreative: 只需输入口播文案,选择期望生成的数字人形象及目标语言,即可生成数字人口播视频。操作指引:输入口播文案——选择目标语言——选择数字人角色——选择输出类型——点击开始生成。 支持图片换脸,仅需上传原始图片和换脸图片,操作指引:上传原始图片——上传换脸图片——点击开始生成。图片大小上限 5M,支持 JPG、PNG 格式。 支持视频换脸,操作指引:上传原始视频——上传换脸图片——点击生成。 支持音频合成数字人,只需上传音频文件,工具支持使用 100+数字人模板。操作指引:上传音频文件——选择数字人角色——选择输出类型——点击开始生成。注意:音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 提供多语种(包含菲律宾语、印地语、马来语等小语种)智能配音,操作指引:输入需配音文案——选择音色——点击立即生成。注意:输入的配音文案需和选择音色语种保持一致。 智能识别视频语言并生成对应字幕,操作指引:点击上传视频——开始生成——字幕解析完成——下载 SRT 字幕。注意:支持 MP4 文件类型,大小上限为 50M。 2. HeyGen:是一个 AI 驱动的平台,可以创建逼真的数字人脸和角色。使用深度学习算法来生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 3. Synthesia:是一个 AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步。支持多种语言,并可以用于教育视频、营销内容和虚拟助手等场景。 4. DID:是一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。 此外,还有适合小白用户的开源数字人工具,如: 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G+3G 语音模型包,启动模型即可。 GitHub: 官网:
2025-01-02
怎么样学习AI
以下是关于学习 AI 的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的发展做好准备。 七、在医疗保健中应用 AI 的学习 为了在医疗保健中让 AI 产生真正的改变,应投资于创建一个模型生态系统——比如“专家”AI——使其像优秀的医生和药物开发者那样学习。成为医疗领域顶尖人才通常以多年的密集信息输入开始,通过正规学校教育和学徒实践,从该领域出色的实践者那里学习。对于 AI 来说,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和生成模型。例如,先训练生物学的模型,然后是化学的模型,再添加特定于医疗保健或药物设计的数据点。预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需要经历多年学习和实践。这种学习方式有助于培养处理细微差别决策的直觉。
2025-01-02
关于医疗辅助诊断的AI有哪些
以下是一些关于医疗辅助诊断的 AI 应用: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:用于加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 平安好医生 APP 中的 AI 医疗诊断辅助系统:辅助医生进行疾病诊断,提高诊断准确性。用户上传症状描述和检查报告后,系统能给出初步的诊断建议和治疗方案,为医生提供参考。
2025-01-02
wps AI 可以辅助一些财务工作吗
WPS AI 可以辅助一些财务工作。生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。具体表现为: 1. 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并建议如何适应模型以支持公司决策。 2. 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:综合、总结并就税法和潜在扣除项提出可能的答案。 4. 采购和应付账款方面:帮助自动生成和调整合同、采购订单和发票以及提醒。
2025-01-02
ai换装,目前主流工具有哪些
目前主流的 AI 换装工具包括:InterAlia(https://interalia.vcflab.org/)。需要注意的是,虽然底层都是大模型,但 AI 工具各有侧重,不同公司也会进行各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。
2025-01-02
有什么模拟面试AI助手吗
以下为您介绍一些模拟面试的 AI 助手: 1. 沃顿商学院提供的模拟创建器:适用于 GPT4 和 Gemini Advanced。您可以将其设定为一位精通为学生设计角色扮演场景的 AI 主持人,帮助学生练习谈判、面试、演讲等技能。它会先自我介绍,然后提问了解学员背景和水平,提供不同场景选项,在模拟前描绘场景,模拟中代入学员对手,结束后给出反馈和改进建议。 2. 智联招聘的面试模拟功能:利用自然语言处理和机器学习技术,模拟面试官提问,为求职者提供面试练习和反馈。 此外,您还可以通过以下步骤在网站上增加一个 AI 助手: 1. 点击打开函数计算应用模板,选择直接部署、填写百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击创建并部署默认环境,等待项目部署完成。 2. 应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击查看确认示例网站部署成功。 3. 在网站的 html 文件中插入几行代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,取消相关代码注释,最后点击部署代码,等待部署完成。重新访问示例网站页面即可查看效果,网站右下角会出现 AI 助手图标,点击即可唤起。
2025-01-02
如何学习AGI
以下是关于学习 AGI 的一些建议: 对于新手学习 AGI: 1. 澄清学习前的状态:可能不理解 AI 和提示词工程,不懂代码和英语较差,在学习前会尝试各种 AI 工具并走弯路。 2. 明确学习后的现状:例如能够创建多 Agent 智能体、进行营销文案创作、应用 SQL 代码、创建图像流智能体等,还能在公司中实践智能客服等。 3. 掌握学习路径:关键词包括“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,学习路径如同游戏通关,有主线和支线。 4. 个人经验分享:像 yoyo 一样,通过学习、分享和实践不断填补知识缝隙来成长。 学习 AI 是一个长期的过程,需要耐心和持续努力,不要害怕犯错。完整的学习路径建议参考「通往 AGI 之路」知识库首页(https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法来设计自己的学习路径。 对于纯 AI 小白,可以参考《雪梅 May 的 AI 学习日记》,其学习模式是输入→模仿→自发创造。学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域并学习最新内容。学习资源免费开源,可利用空闲时间进行学习。 总之,找到适合自己的学习方式和路径,学以致用,不断成长。
2025-01-02
AI 100天学习日志
以下是关于雪梅 May 的 AI 学习日记的相关内容: 1. 适合人群:适合纯 AI 小白,若还在观望不知如何入手,可参考此日记。 2. 学习模式:学习模式为输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 3. 学习内容:日记中的学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现感兴趣的领域并学习最新内容。 4. 学习时间:在半年多时间跨度中,其中 100 天学习 AI,并非每天依次进行,有空时学习,目前作者已进行到 90 天。 5. 学习费用:学习资源免费开源。 此外,作者在第九阶段的感受是,想明白从让个人更优秀角度前进就有很多灵感,其学习路径为迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。在第二阶段,作者因自身工作选择了 AI agent 领域的 coze 进行学习,认为可根据自身熟悉领域选择学习方向,coze 适用所有人,无需代码基础和图文审美,只要能发现智能体需求,就可用工作流实现。
2025-01-02
我是景观设计设计师,不了解市场上的各种AI工具,请问我需要怎么系统的学习、利用AI来改进工作呢
作为景观设计师,系统学习和利用 AI 改进工作可以从以下几个方面入手: 一、了解相关 AI 工具 1. 用于绘制 CAD 图的 AI 工具 CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据输入自动生成 3D 模型。 主流 CAD 软件的生成设计工具:根据设计目标和约束条件自动产生方案。 2. 审核规划平面图的 AI 工具 HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色。 Maket.ai:面向住宅行业,能自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件。 Fast AI 人工智能审图平台:全自动智能审图流程,集成建筑全寿命周期信息。 二、提升自身能力 1. 设计专业方面 培养持续学习习惯,将其转化为实践能力。 提高需求理解、问题分析、审美判断和创意能力。 显性化设计思考与专业优势,提升设计质量。 2. 工具能力方面 严格评估和选型现有 AI 工具,确保标准化输出和一致性体验。 基于业务场景训练专属 AI 模型,集成 AI 能力形成新工具。 建设参数文档库,减少个人喜好的自然语言影响。 3. 工作流程方面 将 AI 融入日常设计流程,形成新的工作方式。 针对不同业务形态和需求,精细化设计流程。 探索合理的人&机结合方式,优化效率和创意品质。 4. 团队协作方面 制定并执行明确的 AI 融合策略。 保证硬件设备支持,营造创新环境。 增强对市场动态的适应能力,明确团队未来发力方向。 总之,随着技术进步,AI 在设计领域的作用将愈发重要,为您创造更多可能。但需注意,每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-02
推荐学习Aigc的入门理论书籍
以下是为您推荐的学习 AIGC 的入门理论书籍和相关资料: 1. 《AIGC Weekly19》:其中包括腾讯非常系统的 Stable Diffusion 介绍文章,马丁整理的关于 AIGC 的碎片化思考,多邻国创始人 Luis von Ahn 专访,Meta AI 发布的自监督学习“烹饪书”,以及回顾大语言模型发展历程的内容。 2. 《AIGC Weekly01》:包含对 Stable Diffusion 工作原理的介绍,Emad 写的关于 SD V2 模型的笔记,Hugging Face Inference Endpoints 指南,GPT4 预测相关内容,以及关于 AI 时代工作未来的读物。 3. 【AI 学习笔记】:介绍了 AI 大模型的相关概念,如生成式 AI、相关技术名词(包括监督学习、无监督学习、强化学习、深度学习等)、技术里程碑(如 2017 年谷歌团队发表的提出 Transformer 模型的论文)等。
2025-01-01
怎么学习python数据分析
以下是关于学习 Python 数据分析的一些建议: 从工具和规模以及方法的角度来看,数据分析是一门独立完整的学科。 工具方面: 1. Excel:是最熟悉和简单的工具,会写公式算进阶用法,还能写 Excel 宏,ChatGPT 能根据需求写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据处理和分析的 Pandas、用于数值计算的 NumPy,画图的 Seaborn、plotly、matplotlib 等,机器学习相关的更多。一般数据分析代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 在 Python 中,以下是一些关键的库和技术: 1. 数据处理与清洗: Pandas:提供高效的数据结构如 DataFrame,用于处理和分析结构化数据。 NumPy:用于数值计算,提供多维数组对象和相关操作函数。 2. 数据可视化: Matplotlib:用于生成静态、交互式和动画可视化的绘图库。 Seaborn:基于 Matplotlib 的高级数据可视化库,提供更美观易用的图表绘制方法。 Plotly:交互式图表库,支持多种图表类型,适合生成动态和交互式图表。 3. 统计分析: SciPy:提供广泛的数学算法和函数,包括线性代数、统计学、优化等。 Statsmodels:用于统计建模和数据分析,适合进行统计测试和回归分析。 4. 大数据技术: PySpark:Apache Spark 的 Python API,用于大规模数据处理。 学习路径方面,可以参考以下课程内容: 1. 学习 Python 基础语法与文本处理,包括数据类型(字符串、数字、列表、字典)、控制结构(条件判断、循环语句)、文本处理基础(字符串操作方法、文件读写操作),通过实践实验如中文文本的基本处理,掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 2. 学习利用 Python 进行自然语言处理(NLP),了解 NLP 的概念和在人文研究中的重要性,掌握 Python 中的 NLP 库,如结巴分词(Jieba)等工具,通过实践实验如中文分词与词频分析,掌握基本的 NLP 操作,理解其在语言研究和教学中的应用。
2025-01-01
个人知识库训练
个人知识库训练主要有以下内容: 私人知识库中的内容一般包括从互联网收集的优质信息以及个人日常的思考和分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 训练专有大模型:KimiChat 和 ChatGPT 等能精准回答问题是因用整个互联网语料训练从而拥有相关知识。也可用个人知识库训练专有大模型,效果虽好但并非当下主流,存在高成本、更新难度大等缺陷。 RAG(检索增强生成)技术:大模型训练数据有截止日期,当需依靠不在训练集中的数据时,可通过 RAG 实现。RAG 应用包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 使用 embeddings:将文本转换成向量能节省空间,可理解为索引。把大文本拆分成小文本块并转换成 embeddings 向量,在向量储存库保存这些向量和文本块作为知识库。用户提问时,问题先转成向量,与储存库向量比对,提取关联度高的文本块与问题组合成新 prompt 发送给 GPT API。例如对“此文作者是谁?”的提问,可通过比较 embeddings 向量得出关联度高的文本块,发送给 GPT API 以获取答案。
2025-01-02
如何创造自己的知识库,并且能完成对给定文本的润色和修改
要创建自己的知识库并完成对给定文本的润色和修改,您可以参考以下内容: 上传方式及操作步骤 Notion 1. 在文本格式页签下,选择 Notion,然后单击下一步。 2. 单击授权。首次导入 Notion 数据和页面时,需要进行授权。 3. 在弹出的页面完成登录,并选择要导入的页面。 4. 选择要导入的数据,然后单击下一步。 5. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符 删除所有 URL 和电子邮箱地址 6. 单击下一步完成内容上传和分片。 本地文档 1. 在文本格式页签下,选择本地文档,然后单击下一步。 2. 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容。每个文件不得大于 20M。一次最多可上传 10 个文件。 3. 当上传完成后单击下一步。 4. 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。 分段标识符:选择符合实际所需的标识符。 分段最大长度:设置每个片段内的字符数上限。 文本预处理规则: 替换掉连续的空格、换行符和制表符 删除所有 URL 和电子邮箱地址 5. 单击下一步完成内容上传和分片。 在线数据 自动采集方式:该方式适用于内容量大,需要批量快速导入的场景。 1. 在文本格式页签下,选择在线数据,然后单击下一步。 2. 单击自动采集。 3. 单击新增 URL。在弹出的页面完成以下操作: 输入要上传的网站地址。 选择是否需要定期同步网站内容,如果需要选择内容同步周期。 单击确认。 4. 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:该方式适用于需要精准采集网页上指定内容的场景 1. 安装扩展程序,详情请参考。 2. 在文本格式页签下,选择在线数据,然后单击下一步。 3. 点击手动采集,然后在弹出的页面点击权限授予完成授权。 4. 在弹出的页面输入要采集内容的网址,然后单击确认。 5. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 6. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。
2025-01-02
如何在本地部署LLM,然后完成某个专业或者主题的专业知识库训练
以下是在本地部署 LLM 并完成某个专业或主题的专业知识库训练的详细步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据电脑系统,点击进入 https://ollama.com/download 下载,下载完成后双击打开,点击“Install”。安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型:如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行粘贴进入并回车,等待自动下载完成。 2. 安装 Docker Desktop: 点击去下载,根据系统进行选择。以 Windows 系统为例,点击 https://docs.docker.com/desktop/install/windowsinstall/ 下载,双击下载项目,点击 ok 加载文件,点击“close and restart”重启电脑。重启后,点击“Accept”,选择第二个,点击"Finish",进入 Docker Desktop。 3. 部署 FastGPT+OneAPI: 在桌面按住“shift”+鼠标右键,选择“在此处打开 Powershell 窗口”,在窗口中一行一行输入并回车。等待上方命令执行完成,下载完成之后。回到桌面,打开 FastGPT 文件夹,右键 dockercompose.yml 文件,选择打开方式为记事本打开,查找并修改相关内容后保存。回到命令行窗口中,继续输入并回车。 4. 配置 OneAPI: 在浏览器中输入:http://localhost:3001 ,进入登录页,账号 root 密码 123456 点击登录。点击【渠道】【添加新的渠道】,类型选择 Ollama,名称设为 qwen2,模型设为 qwen2:0.5b,秘钥设为 sksky,代理设为 http://host.docker.internal:11434 ,点击提交。点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】,点击【令牌】复制 key。 5. 配置 FastGPT: 回到 FastGPT 文件夹里,用记事本打开“dockercompose.yml”文件,查找并修改相关内容后保存。打开 config.json,根据图示修改完成,把相关数值改成 1500 左右。在命令窗口中输入:docker compose down 等待执行完成,再输入:docker compose upd 等待执行完成。在浏览器上输入:http://localhost:3000 ,账号 root 密码 1234 点击进入,设置好后点击确定。发布 API 并创建一个 key。
2025-01-02
知识库管理工具
以下是关于知识库管理工具的相关内容: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述,说明其包含的内容和特点。 3. 配置索引方式:Dify 提供三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式,如需更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库以保持时效性。 创建并使用知识库: 维护知识库内容:为提升召回准确率,可删除、新增或修改知识库内容。 管理知识库:在知识库页面可看到已创建的知识库及相关信息,单击知识库或编辑图标进入详情页面,可进行新增内容、删除内容、更新单元内分段、开启引用等操作。 使用知识库: 在 Bot 内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在 Bots 页面选择指定 Bot 并进入详情页。 4. 在 Bot 编排页面的知识库区域单击加号图标添加指定的知识库。 5. (可选)添加后可在自动调用下拉界面内调整配置项,包括最大召回数量、最小匹配度、调用方式等。 6. (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可查看知识库命中并召回的分片内容。 在工作流内使用: 1. 登录。 2. 在左侧导航栏工作区区域选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内选择添加 Knowledge 节点。
2024-12-31
需要做一个AI知识分享专题会,大概15分钟的时间,请帮忙列出大纲和主题内容
以下是为您生成的 15 分钟 AI 知识分享专题会大纲和主题内容: 大纲: 1. 开场介绍(2 分钟) 2. 主题分享(8 分钟) 3. 交流互动(3 分钟) 4. 总结结束(2 分钟) 主题内容: 开场介绍(2 分钟): 简要介绍本次专题会的目的和流程。 主题分享(8 分钟): 1. 介绍 AI 的基本概念和发展现状。 2. 分享几个 AI 在不同领域的应用案例,如医疗、教育、金融等。 3. 探讨 AI 未来的发展趋势和可能带来的影响。 交流互动(3 分钟): 鼓励参会者提出问题和分享自己的看法,进行简单的交流。 总结结束(2 分钟): 总结本次专题会的重点内容,感谢参会者的参与。
2024-12-30
了解AI的基础知识
以下是关于 AI 基础知识的介绍: 一、新手学习 AI 1. 了解基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后,通过实践巩固知识,尝试使用各种产品创作作品。 知识库中有很多实践后的作品和文章分享。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用中的第一手体验。 二、不会代码者学习 AI 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 4. 评估和调优 性能评估:学会如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 三、中学生学习 AI 1. 从编程语言入手学习 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台 使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术(机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解最新进展。 思考 AI 技术对未来社会的影响,培养思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-12-30