Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

深度学习模型图

Answer

以下是为您提供的关于深度学习模型图的相关内容:

腾讯研究院的相关报告: 基于全年研究积累的三十余万字 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,包括图像处理、视频生成、3D 生成、编程助手、Agent、端侧智能、具身智能和基础模型。通过“快思考”与“慢思考”两种维度进行分析,“快思考”采用人机协同方式完成印象卡片,“慢思考”深入分析技术发展的底层逻辑。

DiT 架构: 结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型。其核心观察包括 Transformer 从文本扩展至其它、DiT 架构带来图像生成质的飞跃、Scaling Law 在图像领域开始生效。

深度学习模型原理的通俗解释: 将深度学习要处理的信息比作水流,处理数据的深度学习网络是由管道和阀门组成的庞大水管网络。网络有多层,每层有调节阀,根据不同任务,层数和调节阀数量有不同组合。比如识别汉字,将图片的数字组成水流灌入网络,根据出口水流情况调节调节阀,直到符合预期要求,训练好的模型可识别新的图片。

AI 相关技术概念与关系

  1. 生成式 AI 生成的内容叫 AIGC。
  2. 相关技术名词:
    • AI 即人工智能。
    • 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈学习。
    • 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。
    • 生成式 AI 可生成多种内容形式,LLM 是大语言模型,大语言模型的任务不止生成。
  3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,提出 Transformer 模型,基于自注意力机制处理序列数据。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI50年度关键词——腾讯研究院.pdf

基于全年研究积累的三十余万字AI进展数据库,对当前AI发展进行阶段性总结具有重要意义。为了系统呈现AI发展的关键技术要点和趋势,该报告精选了50个年度关键词,覆盖大模型技术的八大领域:图像处理、视频生成、3D生成、编程助手、Agent、端侧智能、具身智能和基础模型;借鉴大模型的思维特征,创新性1的通过"快思考"与"慢思考"两种维度进行分析,形成了50张AI技术图景卡片。•"快思考"维度呈现印象卡片,采用人机协同方式完成。项目团队研究人员主导提示词工程与价值判断,把握内容方向;AI系统负责执行,最终绘制输出技术定义、图示与总结语;•"慢思考"维度则深入分析技术发展的底层逻辑。重点整合研究团队在圆桌讨论和专题研究中的深度思考,借助AI辅助梳理出逻辑链条、本质洞见与趋势判断,为读者勾勒AI发展的脉络与方向。AI技术呈现持续演进、动态发展的特征。该报告通过50个关键词构建的技术图景,旨在展现AI发展的重点领域,把握未来关键趋势,为各界提供研究与决策参考。腾讯研究院将持续深化AI&Society领域的探索,并诚挚的邀请各界好友一共关注与参与,一起迈向一个智能共生的时代。——腾讯研究院院长司晓23DiT架构结合扩散模型和Transformer的架构,用于高质量图像生成的深度学习模型。核心观察A:Transformer从文本扩展至其它B:DiT架构带来图像生成质的飞跃C:Scaling Law在图像领域开始生效逻辑链条

走入AI的世界

深度学习要处理的信息比作水流,处理这些数据的深度学习网络是由管道和阀门组成的庞大的水管网络,网络的入口和出口有许多管道开口,这个水管网络有许多层,每一层都有控制水流流向与流量的调节阀。根据不同的任务,层数,每层调节阀的数量可以有不同的变化组合。水管网络中,每层的每个调节阀通过水管与下一层的每个调节阀连接起来,形成一个从前到后逐层连通的水流系统。比如,现在要识别田字,就简单将组成这张图片的所有数字(计算机中所有的点都由0和1组成的数字来表示的)全都变成信息的水流,从入口灌入水管网络。预先在水管网络的每一个出口设立一个字牌,当水流流过水管网络的时候,计算机就会跑到管道出口去看一看是否标记为田字的管道出口流出的水流最多,如果是的话,这个管道网咯符合我们的预期要求,如果不是的话,就需要调节每一个调节阀,直到田字出口流出的谁最多。接下来,比如要识别申字,用类似的方法,把每一张写有申字的图片变为大量的数字组成的水流,灌入水管网络,这一次既要保证申字出口的水流最多,又要保证之前学习的田字不受影响。如此反复进行,直到所有的汉字组成的水流都能按照期望的方式流经整个水管网络,这时我们就说,这个水管网络已经是训练好的深度学习模型了,大量的数字流经整个水管网络后,通过调节阀门,整套水管网络就可以识别汉字了,这样就可以将调节好的每个阀门焊死。静候新的水流的到来。新来的图片转换成数字水流后,灌入整个网络,计算机观察一下哪个口流出的水流多,这张图片写的就是哪个字。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

Others are asking
深度学习模型图
以下是为您提供的关于深度学习模型图的相关内容: 腾讯研究院的 AI 年度关键词报告: 基于全年研究积累的三十余万字 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,包括图像处理、视频生成、3D 生成、编程助手、Agent、端侧智能、具身智能和基础模型。通过“快思考”与“慢思考”两种维度进行分析,“快思考”采用人机协同方式完成印象卡片,“慢思考”深入分析技术发展的底层逻辑。 DiT 架构: 结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型。其核心观察包括 Transformer 从文本扩展至其它、DiT 架构带来图像生成质的飞跃、Scaling Law 在图像领域开始生效。 深度学习模型原理的通俗解释: 将深度学习要处理的信息比作水流,处理数据的深度学习网络是由管道和阀门组成的庞大水管网络。网络入口和出口有许多管道开口,且有多层,每层有调节阀。根据不同任务,层数和调节阀数量可变化。如识别汉字,将图片数字组成的水流灌入网络,根据出口水流情况调节调节阀,直至符合预期要求,训练好的模型可识别新的图片。 AI 技术原理与框架的小白学习笔记: 1. 概念:生成式 AI 生成的内容叫 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签,强化学习从反馈学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,提出 Transformer 模型,基于自注意力机制处理序列数据,无需依赖 RNN 或 CNN。
2025-03-05
深度搜索
以下是为您提供的关于深度搜索的相关信息: Jina AI 推出了 DeepSearch 功能,专为深入研究复杂问题设计,能够自动进行多轮搜索,阅读、分析搜索到的内容,推理优化答案,确保逻辑性和可靠性,且与 OpenAI Chat API 兼容,可轻松接入现有应用。相关链接: 。 在国内月活榜中,deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。
2025-03-02
深度学习ai模型有哪些
以下是一些常见的深度学习 AI 模型: 1. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 2. LLM(大语言模型):例如谷歌的 BERT 模型,可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 3. Transformer 模型:2017 年 6 月由谷歌团队提出,完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。 深度学习是一种参照人脑神经网络和神经元的方法,其中的神经网络可用于监督学习、无监督学习、强化学习等。在机器学习中,包括监督学习(有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。而 AI 即人工智能,机器学习是其重要组成部分。
2025-02-27
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
偏推理型的内容,怎么提升模型的推理深度及准确度?
提升模型推理深度及准确度的方法包括以下几个方面: 1. 扩大模型规模:随着模型规模的扩大,其推理能力会得到提升,类似于 AlphaGo 或 AlphaZero 的工作方式,通过蒙特卡罗推演来修改评估函数,从而提高推理精度。 2. 引入多模态学习:引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习。 3. 优化训练方法: RLHF(Reinforcement Learning from Human Feedback):模型在这个过程中的目标是最大程度地获得人类的认可,通过奖励模型来衡量。 结合不同的推理能力提高途径:将生成不同的思维链(CoT)并选择有效路径的方法,与在部署时用大量计算进行推理的方法结合起来。 4. 改进模型结构和算法: 规模和算法是科技进步的关键因素,数据和计算规模具有决定性作用。 在模型之上添加启发式方法或增加模型本身的规模。 此外,Hinton 还提到了一些相关观点,如最合理的模型是将符号转换成大向量并保留符号的表面结构,大型语言模型通过寻找共同的结构来提高编码效率,以及即使训练数据中有错误,大型神经网络也具有超越训练数据的能力等。
2025-02-21
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
AIGC大模型是什么?
AIGC 大模型是一个较为复杂的概念,下面为您详细解释: 首先,生成式 AI 生成的内容称为 AIGC。 相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是指电脑通过找规律进行学习,包括监督学习、无监督学习和强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似的组。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习和强化学习。 4. 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑方面,2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-05
UI交互设计大模型
以下是关于 UI 交互设计大模型的相关内容: ComfyUI ollama 本地大模型部署: 1. 先下载 ollama 安装。安装好后不会有任何界面弹出,可以在电脑桌面右下角或者隐藏图标里面找到。 2. 之后再去下载对应的模型,选择模型,复制对应的命令。 3. 打开命令行界面,输入对应的模型获取命令,等待下载完成。 4. 下载的模型会保存到 D:\\ollama\\blobs 。 5. Docker 安装时会下载一些文件,安装后改下目录,不要放在 C 盘。 6. Open webui 安装,输入相关命令。安装成功后,回到 docker 点击,会自动打开网页。第一次使用,需要注册一个账号,选择一个下载好的模型就可以开始使用。 7. 若出现端口占用的错误,运行下面两条命令可以解决。 8. 相关链接: ComfyUI ollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ Docker:https://www.docker.com/ Open webui:https://openwebui.com/ 通过 Open WebUI 使用大模型: 在默认情况下,与大模型的交互在终端中进行,但这种方式较古老。大模型有交互客户端 Open WebUI。Open WebUI 是 github 上的开源项目,参考其官方文档 https://docs.openwebui.com/gettingstarted/ 进行下载和安装。 1. 安装之前先安装 Docker,Win 或 Mac 系统参考文档:,注意下载适配电脑系统的版本。Linux 系统请自行上网找教程。 2. 官方文档中有两种安装 Open WebUI 的方式:ollama 和 open webui 一起安装、仅仅安装 open webui。若已安装 ollama,只需要安装 open webui 即可,复制相关命令。安装下载完成后即可使用。 大模型时代的产品特点: 大模型的交互方式是 NUI(自然用户界面),通过自然语言文本、语音、输入输出图片等直接交互,与现在熟悉的 GUI(图形用户界面)差异很大。现在习惯在 GUI 界面通过点击按钮与机器交互,需要一定学习成本。而 NUI 更符合人的直觉,用户几乎无需特别学习,通过对话操作,但大模型产品对普通用户使用门槛较高,用户留存率和粘性不如主流 App。若未来大模型产品都是 NUI 的,可能对整个信息产业带来深远影响。
2025-03-05
GRU+CNN模型如何操作
GRU+CNN 模型的操作主要包括以下步骤: 1. 编码器部分:使用预训练的卷积神经网络(CNN),如 Inception Resnet V2,将输入图像转换为一组特征向量。在这种情况下,大部分 CNN 部分被冻结,保留预训练的权重。 2. 解码器部分:结构较为复杂,涉及到注意力机制、嵌入层、GRU 层、添加层归一化层和最终的密集层等。可以找到很多关于注意力层和解码器步骤的说明。 3. 组合模型:将编码器和解码器组合在一起,形成一个完整的图像字幕生成模型。 4. 自定义损失函数:由于任务是生成文本序列且序列长度可能不同,使用稀疏分类交叉熵作为损失函数,并屏蔽填充的部分。 5. 编译模型:编译模型,为开始训练做准备。 6. 训练模型:可以根据需求进行更多训练以获得更好结果。 7. 推理与生成字幕:训练完成后,为新的图像生成字幕。在推理阶段,需要重构解码器模型,使其可以接收额外的 GRU 状态输入,并编写自定义推理循环,一次产生一个单词,直到生成完整句子。
2025-03-05
GRU模型
GRU(门控循环单元)是 RNN(递归神经网络)的一种变体。 在创建图像描述模型中,解码器部分包含了 GRU 层。GRU 层接受输入,更新其内部状态,并生成输出。通过传递像文本这样的顺序数据,它可以保持与先前输入(例如先前的单词)的顺序依赖关系。 在 Transformer 出现之前,序列到序列的模型主要依赖于循环神经网络(RNN)或其变种,如长短时记忆网络(LSTM)和 GRU。由于传统方法必须按顺序处理序列,在处理长序列时面临梯度消失或梯度爆炸的问题,而且计算效率不高。 在创建图像描述模型的解码器中,GRU 的输出会进入注意力层,该层混合了来自编码器(图像)和解码器(文本)的信息。解码器本身是一个迭代操作,通过自回归地多次调用,最终可以生成完整的文本。 在代码方面,注意力层有两个输入:gru_output 和 encoder_output。在内部,gru_output 用作注意力的查询和键,而 encoder_output 用作值。
2025-03-05
截止今天最强的模型是哪个
目前很难确切地指出截止今天最强的模型是哪一个。以下是一些表现出色的模型: Gemini Ultra:在报告的 32 个基准测试中,在 30 个基准测试中取得了 SOTA,包括多个领域的测试。它是第一个在 MMLU 上实现人类专家水平表现的模型,在多模态推理任务方面也有显著进展。 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。OpenAI 表示下一代 o3mini 模型的推理能力很强。 Gemini 2.0 Flash:Google 发布的该模型在重要的基准能力上,直接追平甚至部分超越了 Gemini 1.5 Pro,且模型速度有极大提升。 Llama 3.1:是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡。 需要注意的是,模型的性能评估会因不同的基准测试和应用场景而有所差异,而且技术在不断发展,最强模型的定义也可能随之变化。
2025-03-05
Deepseek 怎么训练模型 到达写作的水准
要将 DeepSeek 训练模型达到写作的水准,可以参考以下方法: 1. 借助 AI 分析好的文章:找出您最喜欢的文章,投喂给 DeepSeek R1。然后进行多次询问,如从写作角度、读者角度分析文章,询问文章的缺点和不足以及改善和提升的空间,对作者进行侧写,分析其成长背景、个人经历和知识结构对文章的影响。 2. 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。”的提示词。 3. 根据文章内容对作者进行心理侧写:使用如“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射”的提示词。 此外,DeepSeek 模型具有文风出色、善用大词、发散能力强等特点,但也较难收敛,有时会出现幻觉。从创作角度看,其在文学创作上表现出色,能给予更多自由发挥空间。
2025-03-05
请给我推荐一些AI写小说相关的文档和学习资料
以下是为您推荐的一些 AI 写小说相关的文档和学习资料: 1. 《🐋全新 AI 整活计划:DeepSeek 小说家 2025 年 2 月 9 日》 介绍了关于提示词编写及 AI 应用的探讨,包括理性决策提示词的编写方法、示例的价值、自用与他用提示词的区别、改进指令遵循、AI 应用于软件开发等方面。 还分享了关于写作方式、好文字的定义、模型特点与推荐等内容。 2. 《陈财猫:如何用 AI 写出比人更好的文字?》 提到了两个技巧,一是“显式归纳与列出你想要的文本特征”,二是“通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本”。 3. 《Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平》 介绍了一个能写出至少高中水平小说的 coze 工作流,包括用 bing 搜索相关内容、将搜索结果结构化、用大模型草拟大纲、写文章等核心节点。
2025-03-05
我想要知识库里的ai系统学习文档,要怎么获取
您可以通过以下方式获取 AI 系统学习文档: 1. 观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理成学习笔记,在整理过程中学习更多知识,还能与大家交流互动。 2. 等待社区共创内容,通过共创做小项目来反向推动学习。 3. 原子将分享 30 分钟快速体验 AI 工具并教爸妈理解相关内容。 4. 学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 5. 查看如介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章。 6. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 7. 查看历史脉络类资料,如整理了 open AI 的发展时间线和万字长文回顾等。 相关内容的获取链接为:https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2727000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2806000 、https://waytoagi.feishu.cn/minutes/obcn7mvb3vu6k6w6t68x14v5?t=2942000 。
2025-03-05
我想要系统学习AI,请问文档在哪里?
以下是一些可供您系统学习 AI 的资源: 1. 通往 AGI 之路知识库: 其中包含关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等。 有 AIPO 线下活动及 AI 相关探讨,涉及活动规则、玩法以及 AI 在科技发展中的地位和研究方向。 介绍了 way to AGI 社区活动与知识库,包括活动安排、材料准备、知识库使用和内容更新情况。 提供了关于 AI 知识库及学习路径的介绍。 包含 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 说明了知识库的信息来源,如赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐订阅获取最新信息并投稿。 介绍了社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 提供了学习路径,如李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 为初学者入门推荐了 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 整理了 open AI 的发展时间线和万字长文回顾等历史脉络类资料。 2. 通往 AGI 之路的相关平台: 网站: 公众号:通往 AGI 之路 B 站: 小红书: X(Twitter): 内置知识库 AI 助手 此外,还有【法律法规】《人工智能法案》2023.06.pdf_TEXTS ADOPTED 中的相关内容,但此部分主要涉及法规方面。
2025-03-05
我想学习一些AI创作小说的技巧,能给我推荐一些学习材料吗
以下是为您推荐的一些学习 AI 创作小说的资料: 此外,陈财猫还为您提供了一些创作技巧: 1. 显式归纳与列出您想要的文本特征。例如,明确描述写小说的刚需,如优秀的文风、细腻的文笔,具体到“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步调整描述,直到达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。比如,明确指出想要的小说类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于短剧剧本创作这类较新且有特殊要求的任务,更要准确描述其特点和出现的场景。
2025-03-05
学习ai对普通人的生活有什么意义
学习 AI 对普通人的生活具有多方面的重要意义: 1. 提供更高效的个人助理服务:人工智能模型将很快能作为自主的个人助理,代表您执行特定任务,如帮助协调医疗护理。 2. 促进教育方式的变革:人工智能工具在教育领域有创新的应用空间,如通过交流互动辅助学习,但需要正确引导使用,避免过度依赖。 3. 助力艺术创作:在艺术领域,人们可以与计算机合作作画,发挥自身的创造力。 4. 提高工作效率:普通人可以通过合适的软件和学习内容,运用 AI 来提升工作效率。 5. 带来科技便利与幸福:AI 是未来的必然方向,简单试用能让普通人更快受益,使生活因科技而更加便利和幸福。 然而,在推广 AI 的过程中也面临一些挑战,如需要降低计算成本以使其更加普及,避免其成为有限资源导致战争或成为富人的工具。同时,要正确引导使用,避免其带来负面影响。
2025-03-05
小白应该从哪里开始学习AI
对于小白学习 AI,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,《雪梅 May 的 AI 学习日记》也可供参考: 1. 适合纯 AI 小白,可先看左边的目录。 2. 学习模式是输入→模仿→自发创造。 3. 学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 4. 学习时间不是每天依次进行,有空的时候学习。 5. 保持良好的学习状态,能学多少算多少。 6. 学习资源的内容都是免费开源的。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-05