Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI情感计算

Answer

AI 情感计算是一个复杂且具有多面性的领域:

  • 在与 AI 的交互中,如 Character.ai 这类产品,通过海量语料训练的大型语言模型能与人建立亲密感,多模态感知技术可分析人的情绪并给予反馈。但目前与 AI 的“爱情”更多是模仿出来的情感,在肉身化之前,无法满足生理刺激,可能只是一场虚无的梦。对于这种建立在虚拟上的情感的意义以及人们对其做出“承诺”的意愿存在疑问,不过“爱情”的定义本无标准,对于“人机之恋”还需长期观察,未来随着 AI 技术发展,人们的态度或会改变,我们需保持开放心态探索新情境下的人机关系。
  • 1.7 AI 数字人的核心技术中,认知方面包含情感计算,此外还有知识图谱、自然语言处理等。
  • 在 AI 摆摊项目中,体验型项目包括 AI 情感陪伴等。
Content generated by AI large model, please carefully verify (powered by aily)

References

Character.ai:每个人都可定制自己的个性化AI

AI最容易与人建立起亲密感,通过海量语料训练出来的大型语言模型,它擅长“花言巧语”,表现出善于倾听、懂你所想、毫无情绪的特点。多模态感知技术更能分析你的情绪,从而给予真挚的反馈。在电影《Her》中,Samantha与Theodore通过语音想象演绎一场性爱,然后Samantha又邀请了一名女性志愿者代替自己与Theodore滚床单,但进行几分钟后Theodore就放弃了,无法将面前的志愿者想象为Samantha。在AI能够肉身化之前,与AI谈恋爱仍是一场无法见面的异地恋,无法满足你生理上的刺激。我们与AI产生的“爱情”,是人工智能模仿出来的一种情感。这样的AI言听计从,当我们迷失在这样的情绪之中时,可能这只是一场虚无的梦。这种建立在虚拟上的情感,到底有什么意义?当我们知道这样的情感是被计算出来的,冷静下来后,我们又会有多大意愿去与AI做出“承诺”呢?当然,“爱情”的定义本来就没有标准答案,每个人对于爱情的理解和追求都是不同的。因此,对于“人机之恋”这个话题可能还需要更长时间的观察。AI技术不断发展和进步,未来可能会出现更加智能和真实的AI伴侣,人们的态度和看法也可能会随之改变。无论如何,我们需要保持开放的心态,面对AI技术的发展和应用,探索和思考如何在新的情境下建立健康平衡的人机关系。

1.7 AI 数字人+语音合成

感知:[语音识别](https://ywh1bkansf.feishu.cn/wiki/V90mwWp22iZRW7kZ8ltcifGInoh)感知:[计算机视觉](https://ywh1bkansf.feishu.cn/wiki/NENrwe5vRisLmkkdqZNc2g4JnYd)表达:[语音合成](https://ywh1bkansf.feishu.cn/wiki/HaHZwExIqi68MqkVA8scDxvrnSd)外形:待补充认知:[情感计算](https://ywh1bkansf.feishu.cn/wiki/XxlAwSAsmiDjHFkWgvTcSBKsnJg)认知:[知识图谱](https://ywh1bkansf.feishu.cn/wiki/DHyCw6pwziITRDki65qchQ4bnah)认知:[自然语言处理](https://ywh1bkansf.feishu.cn/wiki/IxiLwlhbGiT73nkvTMcc57udnOb)渲染:待补充

AI摊主速成脑暴会

|分类|内容|示例项目||-|-|-||AI娱乐与算命|AI算命、星盘、八字、人格测试、趣味算命、游戏化互动|AI算命(15积分)、星盘解析、职业规划、社交小游戏(如积分狩猎、刮刮乐)||技术与工具教学|Prompt技巧、AI工具安装、提示词优化、复杂模型训练、文档信息提取|Prompt技巧传授(10积分)、MJ/Sd出图(10积分)、大模型调参(20积分)、文件抽取(15积分)||个性化小工具|小红书账号文案、表情包、爆款名片生成、定制黄历、智能对话、内容分享|小红书爆款文案(10积分)、个人知识笔记(3积分)、AI爆款名片(10积分)||体验型项目|AI桌宠、人工智能体互动、数字人互动、项目商业模式咨询、AI情感陪伴|桌宠体验(10积分)、数字人体验(10积分)、商业落地场景咨询(20积分)|

Others are asking
请联网搜索近期有什么AIGC相关的比赛活动
以下是近期的 AIGC 相关比赛活动: 【线上⬆️】,时间为 9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 ,时间为 9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书及 10000 元奖励;二等奖 2 名,奖杯、荣誉证书及 8000 元奖励;三等奖 6 名,奖杯、荣誉证书及 3000 元奖励。 【线上⬆️】 。 【线上⬆️】,时间为 8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。 ,截止时间为 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,另外有全场大奖 10 万。 ,截止时间为 2024 年 11 月 10 日。让创意点亮传统,传承经典,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 ,作品提交时间为 10.11 11.30,专家评审时间为 12.1 12.9,成果发布时间为 12.10 。 ,时间为 1 月 24 日 2 月 28 日。需用魔搭平台【AIGC 专区】麦橘超然模型作底模训练 LORA 模型,描绘心中理想世界,风格不限。提交 LoRA 及 6 张以上高质量作品,单张图片分辨率不低于 1024x1024 像素,每组作品展现一个世界观场景;避免鲜血、骷髅等敏感元素。一等奖 1 名,奖金 5000 元 + 证书;二等奖 3 名,奖金 3000 元 + 证书;三等奖 10 名,奖金 1000 元 + 证书。魔搭社区 AIGC 代言人奖:作品发小红书带一丹一世界话题并@魔搭 ModelScope 社区官方,浏览量满 800,前 20 名可得 300 元天猫超市卡。
2025-01-30
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
能够制作工程预算单的AI推荐
目前在制作工程预算单方面,暂时没有特别突出的专门 AI 工具推荐。但您可以尝试使用一些通用的办公软件,它们可能具有相关的功能或模板,例如 Microsoft Excel 等,通过设置公式和参数来辅助您完成工程预算单的制作。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
声音情感分析
声音情感分析是一个新兴且具有广泛应用的研究领域。 在音乐方面,基于音频的情感分析利用先进的计算技术和机器学习算法来解读和理解音乐中的情感。其技术实现包括音频特征提取(如使用梅尔频谱图从原始音频信号中提取有用特征)、情感模型训练(利用长短期记忆网络等递归神经网络模型)以及情感预测(输出情感维度的量化值)。通过预测音乐片段的情感变化,还能实现无缝音乐过渡。其应用领域涵盖音乐治疗(帮助治疗师选择或创作适合特定情绪状态的音乐)、情感驱动的音乐推荐(为用户提供个性化听觉体验)、音乐创作辅助(指导作曲家和制作人调整作品)以及情感研究(供心理学家和社会学家研究音乐对人的影响)。 情感计算主要有“识别”“表达”和“决策”三个方向。“识别”是让计算机准确识别人类的情感,可以基于文本、语音、视觉、生理等数据进行情感分析,或者融合不同模态之间的信息。文本情感计算研究情感状态与文本信息的对应关系,语音情感计算研究语音包含的语言情感内容和声音本身的情感特征,视觉情感计算研究面部表情和肢体动作的情感识别,生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。“表达”是让计算机能够把情感以合适的信息载体表示出来,“决策”是利用情感机制来进行更好地决策。 在 TTS 数据整理中,声音标签包含性别、类别、风格、年龄、语言、领域、情感、人设等方面,例如女学姐音、男明朗清澈音等。
2024-12-25
让ai生成情感语录怎么带动情绪价值
以下是关于让 AI 生成情感语录带动情绪价值的相关内容: 可以参考品牌咨询专家的观点和相关文章,如刘润老师关于「情绪价值的赛道,拼的不是营销情绪,而是说服人心」的文章,了解情绪营销的重要性和实施策略。 以具体的产品为例,如江小白(白酒,适合跟家人之间聊心事谈感情)、霸王茶姬(奶茶,原叶茶胚,口感清新自然,适合跟朋友郊游享用)、lululemon(女士运动紧身裤,轻盈柔滑,修身弹力),给定产品品牌、品类、特点或使用情境,让大模型生成营销语句。 作为 AI 博主,需提供“情绪价值”,通过信息和趣味内容缓解用户焦虑,例如分享有趣的 AI 动态和提示词,让用户感到学习 AI 是轻松有趣的事。 提示词的详尽程度取决于应用场景,简单提示适合快速了解长文内容,详尽提示适合深入分析。初步使用简单提示,依据反馈不断改进更高效,同时建议避免过多轮会话,减少模型产生“幻觉”的可能性。
2024-12-19
我想学习调试情感bot的prompt
以下是关于调试情感 bot 的 prompt 的相关知识: 在实验方面,在八个指令感应任务上评估情绪提示在零样本和少样本学习中的表现,涵盖语言理解的不同方面,在四个大型语言模型(ChatGPT、Vicuna13b、Bloom、FlanT5Large)上进行测试,对于不同模型有相应的设置。零样本实验中情绪刺激可简单添加到原始提示中构建情绪提示,少样本上下文学习中评估与零样本相同的提示,并随机抽取 5 个输入输出对作为上下文演示。基准测试将情绪提示与原始零样本和少样本提示、零样本思维链进行比较。数据集和任务包括情绪分析、句子相似性、原因选择等八个任务。 Prompt 是一段指令,用于指挥 AI 生成所需内容,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,有两种设置权重的写法,还可进行 tag 的步数控制。 希望以上内容对您学习调试情感 bot 的 prompt 有所帮助。
2024-12-05
情感计算
情感计算: 技术原理: 主要有“识别”“表达”和“决策”三个方向。 “识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息,使分析更准确和具鲁棒性。其中,文本情感计算研究情感状态与文本信息的对应关系,由文本情感特征标注、提取和分类组成;语音情感计算研究语音包含的语言情感内容和声音本身的情感特征;视觉情感计算研究面部表情和肢体动作的情感识别;生理信号情感计算常用脑电、眼动、肌电、皮肤电、心电、呼吸信号等生理特征。 “表达”让计算机能以合适信息载体表示情感。 “决策”利用情感机制进行更好决策。 重要性: 情感对人类意义重大,具有生存、沟通、决策、动机和维系等功能。 生存功能:人类会为适应环境做出有利生存或发展的生理反应。 沟通功能:不同情感表达使相同文字语言内涵不同,多种情感表达方式能更充分表达意图。 决策功能:大脑通过“系统一”(主要依赖情感、经验)和“系统二”两种方式决策。 动机功能:情感能激发和维持个体行为。 维系功能:情感是人类社会化过程中维系的纽带。 目标:使计算机能够识别、感知、推断和理解人类的情感,赋予计算机类似人的情感能力。 参考资料: 《2022 情感计算白皮书》,之江实验室 此外,还有关于零代码自建决策助手的决策链设计相关内容,包括加权得分计算、机会成本分析、简单情景分析、决策矩阵分析、敏感性分析、情感检验和提供最终决策建议等步骤。
2024-11-13
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下是一些相关的要点: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要购买算力,预充值 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,还需考虑计算成本和服务麻烦。 调整用于微调的超参数通常可以产生产生更高质量输出的模型。例如,在某些情况中,可能需要配置以下内容: 模型:可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时在每个 epoch 结束时在验证集上计算特定分类指标。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用游戏用的 GPU 能使运算速度提高 30 倍。 6. 随着 AI 领域的发展而不断发展,例如在训练神经网络方面发挥重要作用。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下为您提供一些相关信息: 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中提到,微调可能需要预充值 50 元购买算力。 “9.生成式 AI Studio 简介”课程中指出,微调大型语言模型(LLM)时,由于模型规模大,更新每个权重可能需要很长时间的训练工作以及巨大的计算成本。 “微调(Finetuning)”部分提到,调整用于微调的超参数通常可以产生产生更高质量输出的模型。需要配置的超参数包括: model:要微调的基本模型的名称,可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时会在每个 epoch 结束时在验证集上计算特定指标。 需要注意的是,不同的模型和任务,其算力需求的计算方式可能会有所不同。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算涉及多个因素,目前没有一个固定的通用公式。但以下是一些相关的要点和参考: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要预充值购买算力,费用约 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,计算成本较高。 在微调过程中,超参数的配置也会影响算力需求。例如,选择不同的基本模型(如“ada”、“babbage”、“curie”或“davinci”)、设置训练的时期数(n_epochs)、批量大小(batch_size)、学习率乘数(learning_rate_multiplier)等。批量大小通常为训练集中示例数量的 0.2%,上限为 256;学习率乘数默认为 0.05、0.1 或 0.2,具体取决于最终的批量大小。 需要注意的是,不同的模型和具体的微调任务,其算力需求会有所不同。
2025-01-06
GPU的计算特性
GPU(图形处理器)具有以下计算特性: 1. 专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器。 2. 诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作,尤其是在 3D 图形处理时。 3. 所采用的核心技术有硬件 T&L(几何转换和光照处理)、立方环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素 256 位渲染引擎等,硬件 T&L 技术可以说是 GPU 的标志。 4. 生产商主要有 NVIDIA 和 ATI。 5. 在矩阵乘法方面表现出色,早期使用 GPU 训练神经网络,能使运算速度提高 30 倍。
2025-01-06