Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

微调所需要的算力计算公式

Answer

微调所需算力的计算涉及多个因素,目前没有一个固定的通用公式。但以下是一些相关的要点和参考:

  • 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要预充值购买算力,费用约 50 元。
  • 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,计算成本较高。
  • 在微调过程中,超参数的配置也会影响算力需求。例如,选择不同的基本模型(如“ada”、“babbage”、“curie”或“davinci”)、设置训练的时期数(n_epochs)、批量大小(batch_size)、学习率乘数(learning_rate_multiplier)等。批量大小通常为训练集中示例数量的 0.2%,上限为 256;学习率乘数默认为 0.05、0.1 或 0.2,具体取决于最终的批量大小。

需要注意的是,不同的模型和具体的微调任务,其算力需求会有所不同。

Content generated by AI large model, please carefully verify (powered by aily)

References

大圣:全网最适合小白的 Llama3 部署和微调教程

本文的核心代码全部参考如下开源项目:[GitHub-datawhalechina/self-llm:《开源大模型食用指南》基于Linux环境快速部署开源大模型,更适合中国宝宝的部署教程](https://github.com/datawhalechina/self-llm/tree/master)[heading1]一、引言[content]大家好,我是大圣,一个致力于使用AI技术将自己打造为超级个体的程序员。作为一名程序员,我对大模型技术是非常向往的,但是因为是非科班出身,一直迟迟没有动手。在Llama3出来之后,我萌生了微调的想法,我的目的很简单,不是为了学习多么高深的知识,而是让自己先入门。入门最好的方式就是直接上手实操,这是也是之前的一系列教程中所强调的理念。由于市面上没有找到专门针对我们纯小白的教程,所以这篇教程就来啦!这篇教程的亮点教你如何购买算力,不再为本地电脑的配置不够而发愁手把手教你下载并部署Llama3模型,以前都是玩别人部署的,这次咱们玩自己的!)使用甄嬛数据集微调Llama3模型,并且针对微调后的模型进行实验了解微调的意义和概念但是这篇教程不会讲解微调的技术性原理以及文中会用到的Python代码。原因很简单,因为我是一位Java开发工程师,里面的代码我都是靠GPT4.0帮我读的另外这篇教程需要你充值50块钱,不过不是给我哦,是购买算力的预充值。我不想因为50块钱把你劝退,所以这里我要多说一句,免费的才是最贵的。看完我的教程,你绝对会认为这50块钱花的很值OK,都交代清楚,大家按照决定是否要继续享用,废话不多少,我们直接开始

9. 生成式 AI Studio 简介

12:29即使您确实为您的用例发现了一个好的提示,您可能会注意到模型响应的质量并不完全一致。为了缓解这些问题,我们可以做的一件事是调整模型。12:40那么调音是什么?好吧,您可能熟悉的一个版本是微调。在这种情况下,我们采用在通用数据集上预训练的模型。我们复制了这个模型。12:51然后,以这些学习到的权重为起点,我们在新的特定领域数据集上重新训练模型。这种技术对于许多不同的用例都非常有效。13:01但是当我们尝试微调LLM时,我们遇到了一些挑战。顾名思义,法学硕士是大型的。因此更新每个权重可能需要很长时间的训练工作。13:12将所有这些计算与现在必须为这个巨大模型提供服务的麻烦和成本相结合……因此,微调大型语言模型可能不是您的最佳选择。13:21但是有一种创新的调优方法称为参数有效调优。这是一个非常令人兴奋的研究领域,旨在通过仅训练一部分参数来减少微调LLM的挑战。13:34这些参数可能是现有模型参数的子集。或者它们可以是一组全新的参数。例如,也许您向模型添加了一些额外的层或额外的嵌入13:45到提示。如果您想了解更多关于参数有效调整和一些不同方法的信息,本课程的阅读列表中包含一篇摘要论文。13:53但如果您只想着手构建,那么让我们转到Generative AI Studio,看看如何开始调优工作。从Generative AI Studio的语言部分,14:02选择调整。为了创建一个调整模型,我们提供了一个名称。然后指向训练数据的本地或Cloud Storage位置。参数有效调整非常适合您拥有“适度”数量的场景14:14训练数据,例如数百或数千个训练示例。您的训练数据应以文本到文本格式构建为受监督的训练数据集。数据中的每条记录或行都将包含输入文本,换句话说,提示,

微调(Fine-tuning)

我们选择了适用于一系列用例的默认超参数。唯一需要的参数是训练文件。也就是说,调整用于微调的超参数通常可以产生产生更高质量输出的模型。特别是,您可能需要配置以下内容:model:要微调的基本模型的名称。您可以选择“ada”、“babbage”、“curie”或“davinci”之一。要了解有关这些模型的更多信息,请参阅[模型](https://ywh1bkansf.feishu.cn/wiki/R70MwasSpik2tgkCr7dc9eTmn0o)文档。n_epochs-默认为4。训练模型的时期数。一个纪元指的是训练数据集的一个完整周期。batch_size-默认为训练集中示例数量的0.2%,上限为256。批量大小是用于训练单个正向和反向传递的训练示例数。总的来说,我们发现更大的批次大小往往更适用于更大的数据集。learning_rate_multiplier-默认为0.05、0.1或0.2,具体取决于final batch_size。微调学习率是用于预训练的原始学习率乘以该乘数。我们建议使用0.02到0.2范围内的值进行试验,以查看产生最佳结果的值。根据经验,我们发现较大的学习率通常在较大的批量大小下表现更好。compute_classification_metrics-默认为假。如果为True,为了对分类任务进行微调,在每个epoch结束时在验证集上计算特定于分类的指标(准确性、F-1分数等)。要配置这些额外的超参数,请通过OpenAI CLI上的命令行标志传递它们,例如:

Others are asking
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下是一些相关的要点: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要购买算力,预充值 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,还需考虑计算成本和服务麻烦。 调整用于微调的超参数通常可以产生产生更高质量输出的模型。例如,在某些情况中,可能需要配置以下内容: 模型:可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时在每个 epoch 结束时在验证集上计算特定分类指标。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下为您提供一些相关信息: 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中提到,微调可能需要预充值 50 元购买算力。 “9.生成式 AI Studio 简介”课程中指出,微调大型语言模型(LLM)时,由于模型规模大,更新每个权重可能需要很长时间的训练工作以及巨大的计算成本。 “微调(Finetuning)”部分提到,调整用于微调的超参数通常可以产生产生更高质量输出的模型。需要配置的超参数包括: model:要微调的基本模型的名称,可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时会在每个 epoch 结束时在验证集上计算特定指标。 需要注意的是,不同的模型和任务,其算力需求的计算方式可能会有所不同。
2025-01-06
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
数据算法算力
以下是关于数据、算法、算力的相关知识: 数据:数据的质量对于生成理想的大模型至关重要,早期大模型存在使用不太合规数据等导致乱说的情况。 算法:算法有技术架构的迭代,如英伟达的显卡辅助模型训练。 算力:算力的字面意思是计算能力,可以直接转化成 GPU 就是算力,电脑里的显卡就是 GPU。一张显卡除了 GPU 外,还有一个很重要的参数是显存。GPU 是一种专门在个人电脑、工作站、游戏机和一些移动设备上做图像和图形相关运算工作的微处理器,其诞生源自对 CPU 的减负,使显卡减少了对 CPU 的依赖,并进行部分原本 CPU 的工作。显存的作用是用来存储显卡芯片处理过或者即将提取的渲染数据。GPU 的生产商主要有 NVIDIA 和 ATI。
2024-12-27
国内有哪些gpu算力平台,支持快速搭建AI大模型预训练环境 和 微调环境
国内的 GPU 算力平台中,支持快速搭建 AI 大模型预训练环境和微调环境的有: 1. 阿里云:提供云计算资源,用户可根据需求租用算力服务。 2. 腾讯云:具备相应的算力支持,为用户提供灵活的选择。 3. 亚马逊 AWS:基础设施提供商建立的“算力集市”,可满足用户的算力需求。 在搭建环境时,通常需要考虑以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,例如可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,英伟达还发布了统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽。但模型训练能耗也是一个关键问题,例如由 8 张 A100 GPU 组成的 DGX 服务器,最大功率达到 6.5 千瓦,运行一小时就会消耗 6.5 度电,若有 1000 台这样的服务器同时运行,每天的电费将达到惊人的 20 万元。
2024-12-14
gpu算力平台
以下是关于 GPU 算力平台的相关信息: NVIDIA 推出全新 GPU 平台 Blackwell,涵盖与 Hopper 兼容的普通系统和与 Grace CPU 连接的专用系统,提供前所未有的算力,有望突破物理极限,为互联网产业注入新动力。配备第五代 NV Link 的全新 Transformer 引擎速度惊人,新型超算的高速运转离不开早期问题检测和替换机制,数据加密也至关重要。全新的 FP8 格式大幅提升计算速度,NVLink 交换芯片实现所有 GPU 同时全速通信,直接驱动铜技术的突破让系统更加经济实惠。训练一个 1.8 万亿参数的 GPT 模型,Blackwell 相比传统方法优势明显,AWS、GCP、Oracle、微软纷纷为 Blackwell 做好准备。Blackwell 惊人的推理能力是 Hopper 的 30 倍,有望成为未来生成式 AI 的核心引擎。 能耗是模型训练的关键问题,一台由 8 张 A100 GPU 组成的 DGX 服务器性能强劲但能耗惊人,运行一小时消耗约 6.5 度电,包括散热每小时约消耗 13 度电。若有 1000 台这样的服务器同时运行,每天电费达 20 万元。对于大多数 AI 创业公司,大规模购买和部署 GPU 充满风险和挑战,但云服务平台为 AI 公司提供了灵活选择。 英伟达发布统一的超算平台 DGX B200,用于 AI 模型训练、微调和推理。它包括 8 个 Blackwell GPU 和 2 个第五代 Intel Xeon 处理器,包含 FP4 精度功能,提供高达 144 petaflops 的 AI 性能、1.4TB 的 GPU 内存和 64TB/s 的内存带宽,使得万亿参数模型的实时推理速度比上一代产品提高 15 倍。目前,亚马逊、谷歌、微软已成为最新芯片超算的首批用户,亚马逊网络服务将建立一个拥有 20,000 GB200 芯片的服务器集群。
2024-12-14
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
训练以及部署微调模型
以下是关于训练以及部署微调模型的相关信息: 创建微调模型: 假设您已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL(如 ada、babbage、curie 或 davinci)开始,可使用后缀参数自定义微调模型的名称。运行命令后会进行以下操作: 1. 使用文件 API 上传文件(或使用已上传的文件)。 2. 创建微调作业。 3. 流式传输事件直到作业完成,这通常需要几分钟,但如果队列中有很多作业或数据集很大,可能需要数小时。 每个微调工作都从默认为 curie 的基本模型开始,模型的选择会影响性能和成本。您的模型可以是 ada、babbage、curie 或 davinci,可访问定价页面了解微调费率的详细信息。 开始微调作业后,可能需要一些时间才能完成。工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。若事件流中断,可通过运行特定命令恢复。工作完成后,会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。 GPT 助手的训练: 在有监督的微调阶段,收集少量但高质量的数据集,要求人工承包商收集提示和理想响应的数据,通常是几万个或类似数量。然后对这些数据进行语言建模,算法不变,只是训练集从互联网文档变为问答提示响应类型的数据。训练后得到有监督的微调模型(SFT 模型),可实际部署。 大型语言模型的微调: 一旦有了基础模型,进入计算成本相对较低的微调阶段。编写标签说明,明确助手的表现期望,雇佣人员创建文档,如收集 100,000 个高质量的理想问答对来微调基础模型,此过程可能只需一天。然后进行大量评估,部署模型并监控表现,收集不当行为实例并纠正,将正确答案加入训练数据,重复此过程。由于微调成本较低,可每周或每天进行迭代。 例如 Llama2 系列,Meta 发布时包括基础模型和助手模型。基础模型不能直接使用,助手模型可直接用于回答问题。若想自己微调,Meta 完成的昂贵的第一阶段结果可提供很大自由。
2025-01-06
全量微调与少量参数微调
在参数规模的角度,大模型的微调分为全量微调(FFT,Full Fine Tuning)和少量参数微调(PEFT,ParameterEfficient Fine Tuning)两条技术路线。 全量微调是对全量的模型参数进行全量的训练。少量参数微调则只对部分模型参数进行训练。从成本和效果的综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续 LLM 的训练过程,通过调整模型本身的参数,而非像提示工程和 RAG 那样仅更改提示,能大幅提高模型在特定任务中的性能。微调有两大好处:一是提高模型在特定任务中的性能,可输入更多示例,经过微调的模型可能会失去一些通用性,但对于特定任务会有更好表现;二是提高模型效率,实现更低的延迟和成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 关于微调的具体实现,LoRA 微调脚本见:。 在微调的超参数方面,选择了适用于一系列用例的默认超参数,唯一需要的参数是训练文件。调整超参数通常可产生更高质量输出的模型,可能需要配置的内容包括:model(要微调的基本模型的名称,可选择“ada”“babbage”“curie”或“davinci”之一)、n_epochs(默认为 4,训练模型的时期数)、batch_size(默认为训练集中示例数量的 0.2%,上限为 256)、learning_rate_multiplier(默认为 0.05、0.1 或 0.2,具体取决于 final batch_size)、compute_classification_metrics(默认为假,若为 True,为对分类任务进行微调,在每个 epoch 结束时在验证集上计算特定于分类的指标)。要配置这些额外的超参数,可通过 OpenAI CLI 上的命令行标志传递。 OpenAI 官方微调教程:
2025-01-06
微调训练框架的选择
以下是关于微调训练框架选择的相关内容: 在 Stable Diffusion 中: 首先,config 文件夹中有两个配置文件 config_file.toml 和 sample_prompt.toml,分别存储着训练超参数与训练中的验证 prompt。 config_file.toml 文件主要包含了 model_arguments、optimizer_arguments、dataset_arguments、training_arguments、sample_prompt_arguments 以及 saving_arguments 六个维度的参数信息。 v2 和 v_parameterization:两者同时设置为 true 时,开启 Stable Diffusion V2 版本的训练。 pretrained_model_name_or_path:读取本地 Stable Diffusion 预训练模型用于微调训练。 optimizer_type:有七种优化器可以选择。不进行选择时默认启动 AdamW 优化器;显存不太充足时,可选择 AdamW8bit 优化器,但会有轻微性能损失;Lion 优化器是较新的版本,性能优异,但学习率需设置较小,比如为 AdamW 优化器下的 1/3。 learning_rate:单卡推荐设置 2e6,多卡推荐设置 1e7。 除了上述的训练环境参数传入,还需将配置好的 config_file.toml 和 sample_prompt.txt 参数传入训练脚本中。 当设置 1024 分辨率+FP16 精度+xformers 加速时,SD 模型进行 Batch Size=1 的微调训练需要约 17.1G 的显存,进行 Batch Size=4 的微调训练需要约 26.7G 的显存,所以最好配置一个 24G 以上的显卡。 微调训练完成后,模型权重会保存在之前设置的 output_dir 路径下。可以使用 Stable Diffusion WebUI 作为框架加载模型进行 AI 绘画,需将训练好的模型放入/models/Stablediffusion 文件夹下。 在 OpenAI 中: 使用 OpenAI CLI 开始微调工作,需指定从哪个 BASE_MODEL 开始(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。 运行命令后会上传文件、创建微调作业并流式传输事件直到作业完成。 每个微调工作都从一个默认为 curie 的基本模型开始,模型的选择会影响性能和成本。 开始微调作业后,可能需要几分钟或几小时才能完成,工作完成后会显示微调模型的名称。此外,还可以列出现有作业、检索作业状态或取消作业。
2025-01-06
测试微调模型
以下是关于测试微调模型的相关内容: 在完成微调之后,需要对结果进行测试。微调不会直接影响原有的大模型,而是生成一些文件,包括模型权重文件、配置文件、训练元数据、优化器状态等。这些文件可以和原有大模型合并并输出新的大模型。 在测试之前,先通过不合并的方式进行微调结果的验证。例如,若数据集中有问答“问:你是谁?答:家父是大理寺少卿甄远道”,当给微调后的模型指定角色“现在你要扮演皇帝身边的女人甄嬛”,然后问模型“你是谁?”,若回答是“家父是大理寺少卿甄远道”,则认为模型微调有效果。 测试代码结果成功。之后可以将微调结果和原有大模型进行合并,然后输出新的模型,使用 webdemo 进行测试。包括切换到对应的目录、执行合并代码、生成相应文件、创建 chatBotLora.py 文件并执行代码进行本地测试、开启自定义服务等步骤,最终验收成功。 此外,当作业成功时,fine_tuned_model 字段将填充模型名称,可将此模型指定为 Completions API 的参数,并使用 Playground 向它发出请求。首次完成后,模型可能需要几分钟准备好处理请求,若超时可能是仍在加载中,几分钟后重试。可通过将模型名称作为 model 完成请求的参数传递来开始发出请求,包括 OpenAI 命令行界面、cURL、Python、Node.js 等方式。 要删除微调模型,需在组织中被指定为“所有者”。 创建微调模型时,假设已准备好训练数据。使用 OpenAI CLI 开始微调工作,需指定基本模型的名称(ada、babbage、curie 或 davinci),还可使用后缀参数自定义微调模型的名称。运行命令会上传文件、创建微调作业、流式传输事件直到作业完成,每个微调工作都从默认为 curie 的基本模型开始,模型选择会影响性能和成本。开始微调作业后,可能需要一些时间才能完成,若事件流中断可恢复。工作完成后会显示微调模型的名称,还可列出现有作业、检索作业状态或取消作业。
2025-01-06
模型微调对模型的影响和价值
模型微调对模型具有重要的影响和价值,主要体现在以下几个方面: 1. 提高结果质量:能够获得比即时设计更高质量的结果。 2. 增加训练示例:可以训练比提示中更多的例子,从而改进小样本学习,在大量任务中取得更好的效果。 3. 节省 Token 和成本:由于更短的提示而节省了 Token,对模型进行微调后,不再需要在提示中提供示例,能够节省成本并实现更低延迟的请求。 4. 提高模型效率:通过专门化模型,可以使用更小的模型,并且由于只对输入输出对进行训练,舍弃示例或指令,进一步改善延迟和成本。 5. 适应特定领域:针对特定领域进行微调,优化所有层的参数,提高模型在该领域的专业性。 目前,微调适用于以下基础模型:davinci、curie、babbage 和 ada。参数规模角度,大模型的微调分成全量微调 FFT(Full Fine Tuning)和 PEFT(ParameterEfficient Fine Tuning)两条技术路线,从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。而通过微调,可以在现有模型基础上,更经济、高效地适应新的应用领域,节省成本并加快模型部署和应用速度。
2025-01-06
我需要找一个帮我生成数字人口播视频的AI工具
以下为您推荐一些可以生成数字人口播视频的 AI 工具: 1. 【TecCreative】 只需输入口播文案,选择期望生成的数字人形象及目标语言,即可生成数字人口播视频。操作指引:输入口播文案——选择目标语言——选择数字人角色——选择输出类型——点击开始生成。 支持多场景数字人口播配音,操作指引:输入口播文案——选择数字人角色和场景——选择输出类型——点击开始生成。 支持音频驱动多场景数字人,操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。 2. XiaoHu.AI 推荐的开源且适合小白用户的数字人工具 特点:一键安装包,无需配置环境,简单易用。 功能:生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G+3G 语音模型包,启动模型即可。 GitHub: 官网:
2025-01-07
根据小学生试卷答题情况,分析需要加强复习的知识点,用什么AI工具
以下是一些可用于根据小学生试卷答题情况分析需要加强复习知识点的 AI 工具及相关建议: 1. ChatGPT:可以帮助分析答题中的语言表达、逻辑推理等方面的问题,从而确定语文、数学等学科中需要加强的知识点。 2. 国内模型如豆包:能提供一定的分析和指导。 3. 通义:对于英语等学科的答题情况分析有帮助,例如语法、词汇等方面的问题。 在使用这些 AI 工具时,您可以将试卷内容输入给工具,并要求其分析答题中的错误和不足之处,从而找出需要加强复习的知识点。但需要注意的是,不能完全依赖 AI 的分析结果,还需要结合教师的专业判断和教学经验。
2025-01-05
我需要用AI画一幅清晨的,早晨的画,请给我一些提示,或者这个提示词
以下是一些用于绘制清晨场景的 AI 绘画提示词: 早晨的阳光洒在长城上,露出一线光辉。提示词:A photographic capture of the Great Wall in the morning light, adorned with red lanterns for the Spring Festival, revealing a gleam along its path. From a distant view, slowly zooming in to unveil its grandeur and festive spirit. Created Using: vibrant reds, traditional lanterns, early morning light, detailed texture of the wall, historical ambiance, wideangle lens, cinematic zoom, festive atmosphere ar 16:9 v 6.0 市民在公园里晨练,老人太极,孩子们在跑步。提示词:A lively park scene at dawn with citizens practicing Tai Chi and children running, all amidst Spring Festival decorations like red lanterns and paper cuttings. Medium shot with a horizontal pan to capture the energetic and festive atmosphere. Created Using: natural daylight, festive decorations, diverse age groups, motion blur for movement, community spirit, green park background with red accents, candid expressions, lively festive atmosphere ar 16:9 v 6.0 场景提示词:In the morning mist(在晨雪中)、full of sunlight(充满阳光) 此外,还有一些常见的与清晨相关的场景提示词,如:classroom(教室)、forest(森林)、ruins(废墟)、city(城市)、street scenery(街景)、meadow(草原草地)等。您可以根据自己的具体需求和创意,对这些提示词进行组合和调整。
2025-01-04
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04