Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Error occurred when executing IPAdapterAdvanced: insightface model is required for FaceID models File "D:\AI\comfyui_20240421\execution.py", line 151, in recursive_execute output_data, output_ui = get_output_data(obj, input_data_all) File "D:\AI\co

Answer

以下是针对您所遇到的报错问题的一些解决建议:

  1. 对于 ipadater 部分报错说 model 不存在的情况,将文中画圈部分修改调整到不报错。Pulid 部分,除了下载好对应的节点以及参考官方网站GitHub - cubiq/PuLID_ComfyUI:PuLID native implementation for ComfyUI最下面的安装对应要求外,还要注意上图中的第二要点,对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”的文件及对应的云盘链接:PulID 全套模型,链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb,提取码:y6hb。否则将会遇到报错:Error occurred when executing PulidEvaClipLoader。
  2. 对于 Ollama 大模型部分,为了应对没下载大模型带来的报错,需要下载大模型。首先,下载 ollama,网站:Download Ollama on Windows
  3. 如果缺少 ipadapter 的模型,可去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus 。如果遇到“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似的报错,可在这个网址里找到多个关于 IPAdapter 报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313 。

另外,换脸工作流的核心组件是 Apply InstantID Advanced 节点,这个节点的作用就是将源人脸替换到目标图像中。其中,instantID 模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是 IP-Adpater,用于识别和保留目标图像 image_kps 的风格并迁移到生成图像中。instantID Face Analysis 节点用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸 image 的特征。controlnet 模型的作用是识别目标图像 image_kps 的低层次特征,包括骨架、姿势、边缘、结构。controlnet 模型和 instantID 模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。

Content generated by AI large model, please carefully verify (powered by aily)

References

4-SeasonYou 工作流 副本

⑥对于ipadater部分,倘若加载器部分报错说model不存在,将文中画圈部分修改调整到不报错:⑦Pulid部分,除了下载好对应的节点以及参考官方网站[GitHub - cubiq/PuLID_ComfyUI:PuLID native implementation for ComfyUI](https://github.com/cubiq/PuLID_ComfyUI)最下面的安装对应要求外:还要注意上图中的第二要点,对应安装一些内容,具体要求如下图(在云盘中命名为“pulid插件模型位置.png”)及对应的云盘链接:PulID全套模型链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb提取码:y6hb否则将会遇到以下的报错:Error occurred when executing PulidEvaClipLoader:(MaxRetryError('HTTPSConnectionPool(host=\'huggingface.co\',port=443):Max retries exceeded with url:/QuanSun/EVA-CLIP/resolve/main/EVA02_CLIP_L_336_psz14_s6B.pt(Caused by SSLError(CertificateError("hostname \'huggingface.co\' doesn\'t match either of \'*.extern.facebook.com\',\'extern.facebook.com\'")))'),'(Request ID:05b932bd-e982-434e-8dc7-e41cca2e949f)')⑧Ollama大模型部分,为了应对没下载大模型带来的报错,因此需要下载大模型首先,下载ollama,网站:[Download Ollama on Windows](https://ollama.com/download)

维纳 Vina:ComfyUI 新手从0到1在 MacBook Pro M1 跑通二狗子的黑神话工作流

这个换脸工作流的核心组件是Apply InstantID Advanced节点,这个节点的作用就是将源人脸替换到目标图像中,展开看一下这个节点的模型和参数,就能理解这个节点的工作原理了。1.instantID:载入instantID模型,instantID模型擅长提取图片的高层次特征,包括面部的纹理信息、几何结构、风格特征等,在图中例子是IP-Adpater,用于识别和保留目标图像image_kps的风格并迁移到生成图像中。1.insightface:接入instantID Face Analysis节点,用于提取人脸五官的特征向量,作用是使生成图像时,人脸的眼睛、鼻子、嘴巴等样子仍然符合源人脸image的特征。1.controlnet:载入控制模型,controlnet模型的作用是识别目标图像image_kps的低层次特征,包括骨架、姿势、边缘、结构。controlnet模型和instantID模型起到不同的控制作用,结合使用可以达到将源人脸的五官替换目标图像中五官的效果。1.image、image_kps:image源人脸,在本文工作流中,即用户上传的人脸,是提供五官特征向量的图片。image_kps(image key points)目标图像,提供五官对齐的特征点、表情、风格等,以便将源人脸的五官特征替换到目标图像的对应位置。1.model:

三种方法,教你用SD做出爆火的黏土风图像

用的是熊木大佬在open art分享的黏土工作流如果你缺少ipadapter的模型,去这个网址下载:https://github.com/cubiq/ComfyUI_IPAdapter_plus工作流中用的的模型和LoRA:Juggernaut XL大模型:https://civitai.com/models/133005?modelVersionId=357609CLAYMATE - SDXL的粘土化风格https://civitai.com/models/208168/claymate-claymation-style-for-sdxlDoctor Diffusion的粘土风格LoRAhttps://civitai.com/models/181962/doctor-diffusions-claymation-style-lora我也将这几个模型上传到了网盘,方便下载:Juggernaut XL大模型链接:https://pan.baidu.com/s/1X_KUygwJLiqTtv746nVvcg?pwd=6npe提取码:6npeCLAYMATE - SDXL的粘土化风格LoRA链接:https://pan.baidu.com/s/1eV-QQO8WDLtfZt1Tp2Qa8Q?pwd=q7g6提取码:q7g6Doctor Diffusion的粘土风格LoRA链接:https://pan.baidu.com/s/1JQf560WUHM_gBhwfr-IxOA?pwd=7hgg提取码:7hgg我也下载到本地,一直遇到这种报错,“Error occurred when executing IPAdapterUnifiedLoader:ClipVision model not found.......”类似下图这样:研究了一天终于解决了,是在这个网址里找到的有多个关于IPAdapter报错的解决办法:https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/313

Others are asking
目前各大主流模型的 max output token
以下是目前各大主流模型的 max output token 情况: Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token。 ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token。 ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开: 。此外,GPT3 和 GPT3.5/4 的 token 计算方式不同,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2024-11-24
编写一个python代码其中附件是一个名为data.csv的CSV格式文件,提取表格中数据,行列保持一致进行如下格式转换:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬ (1)按行进行倒序排列;‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫
以下是一个使用 Python 实现读取 CSV 文件并按行倒序排列的代码示例: ```python import pandas as pd 读取 CSV 文件 data = pd.read_csv 按行倒序排列 reversed_data = data.iloc 打印结果 print ``` 在上述代码中,首先使用 `pandas` 库的 `read_csv` 函数读取 `data.csv` 文件,然后使用 `iloc` 索引和切片操作 `` 实现按行倒序排列。
2024-12-12
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05
在comfyui中节点报错UNETLoader Error while deserializing header: MetadatalncompleteBuffei
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错‘UNETLoader Error while deserializing header: MetadatalncompleteBuffei’”的信息,难以准确判断问题的具体原因和解决办法。这可能是由于多种因素导致的,比如模型文件损坏、软件版本不兼容、配置错误等。建议您检查模型文件的完整性,确保 ComfyUI 软件为最新版本,并检查相关配置是否正确。如果问题仍然存在,您可以尝试在相关的技术论坛或社区中搜索类似问题,以获取更多可能的解决方案。
2024-12-04
论文中Data availability是not applicable什么意思
论文中 Data availability 是 not applicable 意味着数据不可用。根据文章,Data availability 是指制造商或数据持有者应根据用户的要求提供数据访问权限。当数据访问请求无法通过用户账户或产品或服务提供的配套移动应用程序等自动执行时,制造商应告知用户如何访问数据。此外,用户有权授权数据持有者向第三方服务提供商(如售后服务提供商)提供数据访问权限。对于微小型企业,这些义务将被豁免。第三章规定了适用于数据提供义务的一般规则。当数据持有者根据第二章或其他规定有义务向数据接收者提供数据时,应适用附件中规定的数据提供条件。当数据接收者认为数据提供条件具有歧视性时,数据持有者应证明不存在歧视。数据持有者不得在未经用户要求的情况下,向数据接收者提供排他性的数据访问权限。
2024-05-21
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
Image Caption Font file does not exist: /dapao_ComfyUl/ComfyUl/custom_nodes/ComfyUl_LayerStyle
以下是关于 LayerStyle 副本(包括 TextImage 和 SimpleTextImage)的详细说明: TextImage: 从文字生成图片以及遮罩。支持字间距、行间距调整,横排竖排调整,可设置文字的随机变化,包括大小和位置的随机变化。 节点选项包括: size_as:输入图像或遮罩,将按其尺寸生成输出图像和遮罩,此输入优先级高于 width 和 height。 font_file:列出 font 文件夹中可用字体文件列表,选中的字体用于生成图像。 spacing:字间距,以像素为单位。 leading:行间距,以像素为单位。 horizontal_border:侧边边距,数值为百分比,横排时为左侧边距,竖排时为右侧边距。 vertical_border:顶部边距,数值为百分比。 scale:文字总体大小,以百分比表示,默认根据画面尺寸和文字内容自动计算。 variation_range:字符随机变化范围,大于 0 时字符产生大小和位置随机变化,数值越大变化幅度越大。 variation_seed:随机变化的种子,固定此数值每次产生的单个文字变化不变。 layout:文字排版,有横排和竖排可选。 width:画面宽度,若有 size_as 输入将被忽略。 height:画面高度,若有 size_as 输入将被忽略。 text_color:文字颜色。 background_color:背景颜色。 SimpleTextImage: 从文字生成简单排版的图片以及遮罩,参考了的部分功能和代码。 节点选项包括: size_as:输入图像或遮罩,将按其尺寸生成输出图像和遮罩,此输入优先级高于 width 和 height。 text:文字输入。 font_file:列出 font 文件夹中可用字体文件列表,选中的字体用于生成图像。 align:对齐选项,有居中、靠左和靠右三个选项。 char_per_line:每行字符数量,超过自动换行。 leading:行间距。 font_size:字体大小。 text_color:文字颜色。 stroke_width:描边宽度。 stroke_color:描边颜色。 x_offset:文字位置的水平偏移量。 y_offset:文字位置的垂直偏移量。 width:画面宽度,若有 size_as 输入将被忽略。 height:画面高度,若有 size_as 输入将被忽略。 注: 仅限输入 image 和 mask,如果强制接入其他类型输入,将导致节点错误。 font 文件夹在 resource_dir.ini 中定义,该文件位于插件根目录下,默认名字是 resource_dir.ini.example,初次使用需将文件后缀改为.ini。用文本编辑软件打开,找到“FONT_dir=”开头的行,编辑“=”之后为自定义文件夹路径名。该文件夹内所有的.ttf 和.otf 文件将在 ComfyUI 初始化时被收集并显示在节点的列表中。若 ini 中设定的文件夹无效,将启用插件自带的 font 文件夹。
2025-02-05
如何利用AI 工具优化LinkedIn profile
利用 AI 工具优化 LinkedIn profile 可以参考以下方法: 1. 优化二维码: 找一个想要的二维码或链接,通过以下网站进行优化。 草料(https://cli.im/):可进行微信二维码解码、生成 QRL 链接、二维码美化等,根据具体需求调整容错率等选项。 (https://qrcode.antfu.me/):用法与草料类似,定位点花样更多,还可对二维码进行拓展。 2. 借鉴其他平台的优化经验,如阿里巴巴营销技巧和产品页面优化: 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况。 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 产品页面设计:AI 设计工具生成吸引人的页面布局。 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 图像识别和优化:AI 技术选择或生成高质量产品图片。 价格策略:分析不同价格点对销量的影响。 客户反馈分析:了解客户需求,优化产品和服务。 个性化推荐:根据用户购买历史和偏好提供推荐。 聊天机器人:提供 24/7 客户服务。 营销活动分析:了解活动效果。 库存管理:预测需求,优化库存。 支付和交易优化:分析支付方式对交易成功率的影响。 社交媒体营销:在社交媒体上找到目标客户群体。 直播和视频营销:分析观众行为,优化内容。 此外,还可以参考 AI 应用专家在博客数字化转型方面的实战经验: 1. 对于技术爱好者: 从小项目开始,尝试使用 AI 辅助编码。 探索 AI 编程工具,如 GitHub Copilot 或 Cursor。 参与 AI 社区,与其他开发者交流。 构建 AI 驱动的项目。 2. 对于内容创作者: AI 辅助头脑风暴,获取创意方向。 建立 AI 写作流程,从生成大纲开始。 多语言内容探索,利用 AI 辅助翻译和本地化。 优化 SEO,利用 AI 工具获取优化建议。
2024-12-17
chatgpt file uploader extended 在哪里下载
以下是 ChatGPT File Uploader Extended 的下载方法: 安卓系统: 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示一步步操作并登录。 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI。注意这步骤可能遇到“google play 未在您所在的地区提供此应用”的问题。解决方法是在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。如果账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 体验 ChatGPT:如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 订阅 GPT4 Plus 版本:先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在 ChatGPT 里订阅 Plus。 苹果系统: 在 Apple Store 下载 ChatGPT:中国区正常下载不了,需要切换到美区才可以下载。美区 Apple ID 注册教程参考知乎链接: 。最终在 Apple Store 搜到 ChatGPT 下载安装,注意别下错。 支付宝购买苹果礼品卡充值订阅付费 App:打开支付宝,地区切换到【美区任意区】,往下滑,找到【品牌精选折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store & iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀。包括支付宝购买礼品卡、在 apple store 中兑换礼品卡、在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 使用 ChatGPT 4o: 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。
2024-11-15
pip install -r requirements.txt ERROR: Could not open requirements file: [Errno 2] No such file or directory: 'requirements.txt' 怎么解决
以下是可能的解决方法: 1. 找到您的 ComfyUI 总文件夹,找到下面文件中的 python 文件夹(有些人的是 python_emembeded)中的 python.exe(可执行文件,右键属性复制路径,然后继续在相关文件路径下通过 cmd 进入终端,右键粘贴刚才的路径加“\\python.exe m pip install r requirements.txt”。 2. 本部分报错基本都是因为网络问题,大部分安装问题可以通过使用国内镜像源来解决。例如:在执行安装 requirements.txt 文件时,可以尝试使用“pip install i https://mirrors.aliyun.com/pypi/simple/ r D:/openai.wiki/stablediffusionwebui/requirements.txt”。这段代码可以理解为不使用官方下载地址,而是国内阿里云的镜像地址下载相关依赖组件。如果还是不能解决,请自行搜索 CMD 魔法上网,有一些魔法工具即便可以访问 Youtube、Google 等网站,也不代表它能够在 CMD 中是可以正常使用的,因为有一些魔法工具无法在 CMD 中被继承。 3. 如果出现“ERROR:Could not install packages due to an OSEr”,考虑在命令后面输入“user”。 4. PyPI 元数据包有问题,可以尝试执行“pip cache purge”清理缓存。
2024-10-19
传统产品经理如何转AI产品经理?
传统产品经理若要转型为 AI 产品经理,需要注意以下方面: 1. 掌握算法知识: 理解产品核心技术,有助于做出更合理的产品决策。 与技术团队有效沟通,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,更好地应对 AI 技术的迅速发展。 提升产品竞争力,发现产品的独特优势并提出创新特性。 增强数据分析能力,处理和分析 AI 算法涉及的数据。 2. 了解相关技术原理和框架: 如思维链,谷歌在 2022 年的论文提到其能显著提升大语言模型在复杂推理的能力,可在问题后加“请你分步骤思考”。 RAG(检索增强生成),将外部知识库切分转成向量存于向量数据库,用户提问时段落信息会和问题一起传给 AI,可搭建企业和个人知识库。 PAL(程序辅助语言模型),2022 年论文提出,对于计算问题不让 AI 直接生成结果,而是借助 Python 解释器等工具。 ReAct 框架,2022 年论文提出,将 reason 与 action 结合,让模型动态推理并与外界环境互动,可借助 LangChain 等框架简化构建流程。 3. 关注技术论文和前沿动态:虽然小白直接看技术论文有难度,但仍需完成一定知识储备,也可借助 AI 辅助阅读。同时,多参考相关的科普入门视频和访谈,如林粒粒呀的视频和安克创新 CEO 阳萌的访谈等。
2025-04-08
我想从零基础学习成为一名ai产品经理,我该学习哪些知识内容,请把这些知识内容做个排序。
以下是从零基础学习成为一名 AI 产品经理所需学习知识内容的排序: 1. 入门级: 通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉行业竞争格局与商业运营策略。 3. 落地应用: 有一些成功落地应用的案例,产生商业化价值。 同时,AI 产品经理还需要具备以下技能和知识: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能准确评估某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关知识,提升数据分析能力。 此外,了解技术框架,对技术边界有认知,关注场景、痛点、价值也是很重要的。
2025-04-08
aigc降重
AIGC 降重相关知识如下: AIGC(AIGenerated Content)是指具有文本、图片、音频、视频等内容生成能力的模型及相关技术。生成式 AI 能够赋能诸多领域,如语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,音视频生成利用扩散模型、GANs 和 Video Diffusion 等。 AIGC 应用可能引发多种风险,包括内生风险(算法的不可解释性和不可问责性,代码开源可能带来的安全和伦理担忧)、数据隐私问题(数据泄露、匿名化不足、未经授权的数据共享等)和知识产权风险(作品侵权、不当竞争等)。 相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。在应用中,需重伦理道德,不得生成煽动颠覆国家政权、推翻社会主义制度,危害国家安全和利益、损害国家形象,煽动分裂国家、破坏国家统一和社会稳定,宣扬恐怖主义、极端主义,不得宣扬民族仇恨、民族歧视,暴力、淫秽色情,以及虚假有害信息等法律、行政法规禁止的内容。GenAI 工具和 AIGC 提供者应注意在算法设计、训练数据选择、模型生成和优化、提供服务等过程中,采取有效措施防止产生民族、信仰、国别、地域、性别、年龄、职业、健康等歧视。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。
2025-04-08
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
ai论文程序员是什么岗位
在现行法律体系框架下,AI 论文中关于程序员在著作权归属方面存在以下情况: 程序员不是编写 AI 代码所生成内容的著作权归属主体。虽然构建 AI 模型耗费了程序员大量脑力劳动,但他们只是代码的创作主体,其权利可通过计算机软件著作权进行保护。 以 Stable Diffusion 生成的图片为例,程序员对最终产出的图像没有创作的主观意愿,不能成为图片的创作主体。
2025-04-08
AI写商品标题及详情
以下是关于用 AI 写商品标题及详情的相关内容: 使用 AI 完成商品标题及详情的撰写,可以采取以下多种方式和步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。 2. 关键词优化:AI 能够分析和推荐高流量、高转化的关键词,用于优化产品标题和描述,提升搜索排名和可见度。 3. 产品页面设计:借助 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:AI 可以分析不同价格点对销量的影响,协助制定有竞争力的价格策略。 7. 客户反馈分析:分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,在智能导购方面,有以下 100 个创意方向中的部分相关内容: 1. AI 生成商品描述:基于产品图自动生成吸引人的文案。 2. 智能包装推荐:根据商品类型推荐环保包装方案。 在工作流方面,狭义工作流解决单一环节或任务的自动化,步骤数量较少(3 5 步),逻辑结构线性无分支,自动化程度低,管理难度容易,适用于基本通知、简单任务的自动化等场景。广义工作流涵盖整个业务流程的自动化,步骤数量较多(10 步以上),逻辑结构多分支且复杂,自动化程度高,管理难度大,适用于企业级流程自动化、复杂任务协调等场景。例如在电商领域,狭义的工作流可以是自动改写商品标题或详情,广义的则是从商品发布、上架到客服、发货全流程的自动化管理。
2025-04-08