直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我想收集一些AIGC行业应用的案例

回答

以下是一些 AIGC 行业应用的案例:

  • 在内容创作方面:
    • 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。
    • 图像生成:使用 Stable Diffusion、DALL-E 等模型生成艺术作品、照片等。
    • 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。
  • 在制造业领域:
    • 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。
    • 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。
    • 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。
    • 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。
    • 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。
  • 在医疗行业:
    • 疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了一种名为 Halicin 的新型广谱抗生素。
  • 在广告营销行业:
    • 从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,还能降低内容制作成本并加速创意实现。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

十七问解读生成式人工智能

"大家好!这篇文章收集了社区小伙伴们向我提出的日常问题以及我的一些答复,算是一个全面的汇总。鉴于文章的科普性质和广泛的受众,我将通过问答的形式,尽量使用浅显易懂的语言来介绍一些基本概念,希望大家能有所收获。"[heading1]问题一、AIGC是什么?[content]AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

开发:AI应用大模型商业化落地现状与思考

接下来,我们将深入了解大模型在商业化过程中的实际应用情况。首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!广告营销行业目前仍然是AIGC()应用最多的业务场景之一,大模型在营销行业从初期的市场分析、中期的客户转化以及后期的客户复购均可参与打开营销生态新思路,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过AI+设计相关的SOP来提高效率。大模型的应用不仅为营销策略提供了新的思路,还能为消费者带来更加个性化、智能化和互动性强的体验。此外,它们还能显著降低内容制作的成本并加速创意的实现过程。

其他人在问
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
适合游戏设计的aigc平台
以下是一些适合游戏设计的 AIGC 平台及相关案例: 1. 上海人工智能实验室旗下的 OpenInnoLab平台:北京市新英才学校的“AI 创作家”课程中,学生使用该平台的文生图 AI 工具生成桌游卡牌背后的图案。 2. 在“DragonX”宠物龙养成游戏中,Demo 的原则为 AIGC 的最大化,玩法内容基本都使用 AIGC 来生产游戏内容,包括世界观、核心循环、核心玩法等方面。 3. 关于游戏设计与 AIGC 的相关讨论:“质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期”涵盖了游戏与生成式 AI 的发展趋势、游戏+AI 制作的讨论、资本市场对 AI+游戏的看法、AI 对游戏领域带来的变革以及新 AI 游戏面临的问题等多方面内容。
2024-12-18
通往AIGC之路
以下是为您整合的关于“通往 AGI 之路”的相关内容: “通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。 【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。扫码添加菩萨老师助理,了解更多信息。 通用人工智能(AGI),也叫强人工智能,通常这玩意出现时也就是奇点科技大爆炸的那一刻,科技推动文明呈指数级增长。也许在 5 年后,也许在 2035 年,也许在 2050 年。通往通用人工智能的路也许还长,但它已如海那边吹过来的风,还没有看到大海,就已闻到潮湿腥咸的味道。 在 OPEN AI 发布 gpt3.5 引爆 AIGC 潮流不久,“通往 AGI 之路”由几个对 AIGC 感兴趣的人发起组建。其中有个设计师为其作了一套品牌 VI,设计师三思用 Midjourney 生成了小鹿吉祥物三视图。彭青云在看到相关内容后,希望为其做小鹿 IP 的延展,并获得了相关权限。
2024-12-16
问我一个关于AIGC的问题。
以下是一些关于 AIGC 的问题供您参考: 1. AIGC 在内容创作领域的优势和局限性分别是什么? 2. AIGC 如何影响传统的内容创作行业? 3. 目前 AIGC 在图像生成方面有哪些最新的技术突破? 4. 如何评估 AIGC 生成内容的质量和准确性? 5. AIGC 在视频生成领域的应用前景如何? 6. 与 UGC 和 PGC 相比,AIGC 在内容多样性方面表现如何? 7. 哪些行业最有可能率先广泛应用 AIGC 技术? 8. Gen AI/Generative AI 与 AIGC 在技术实现上有哪些关键差异? 9. ChatGPT 作为一种服务,与其他类似的聊天应用有何不同? 10. 未来 AIGC 工具在产品原型设计方面可能会有哪些创新?
2024-12-14
怎样学习AIGC
以下是关于学习 AIGC 的相关内容: AIGC 相关概念: 人工智能(AI):一种目标,让机器展现智慧,简称 AI。 生成式人工智能(GenAI):一种目标,让机器产生复杂有结构的内容,简称 GenAI。 机器学习:一种手段,让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型,简称 LLMs。 ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT 是 AIGC 技术的一个应用实例,代表了 AIGC 在文本生成领域的进展。 最近感悟: 半个月没更新文章,对 AIGC 做了更系统、深入的学习和调研。 参加了 3 场 AI 线下活动,在 AI 社群中浪迹一个多月,感到兴奋和热血,认为 AIGC 在 2024 年的发展类似 2014 年移动互联网时代大量新兴 APP 的涌现。 感悟包括:AI 领域新名词、新概念等丰富多彩;AI 知识付费领域“鱼龙混杂”;AI 发展迅速,学习 AI 知识很重要。 AIGC 学习三步法: 具体内容未给出,如需了解,请补充更多信息。 AGI、GenAI、AIGC 几个概念的区别与理解可参考相关图片。更多概念可问 Kimi、通义千问、文心一言等大模型。国内主要模型公司及地址未给出。
2024-12-14
aigc的当前生态
AIGC 的当前生态主要包括以下方面: 1. 概述:GenAI(生成式 AI)能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。作为强大的技术,能赋能诸多领域,但存在合规风险,我国对 AIGC 的监管框架由多部法律和规定构成。 2. 分类:AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用多种模型,如 GPT4 和 GeminiUltra;图像生成依赖多种技术,代表项目有 Stable Diffusion 和 StyleGAN 2;音视频生成利用多种模型,代表项目有 Sora 和 WaveNet。 3. 应用领域:AIGC 可应用于音乐生成、游戏开发、医疗保健等领域,在游戏开发和制作的整个生命周期的多个阶段都有应用,例如用文本生成平面图像,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可将文本描述生成高质量二维图像。 4. 产品原型设计工具:目前有 UIzard、Figma、Sketch 等基于 AIGC 的工具可用于产品原型设计,其 AI 功能包括自动生成设计元素、提供设计建议、优化用户界面布局等。随着技术发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-12-13
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
智能客服的实践案例有哪些?
以下是一些智能客服的实践案例: 在销售方面,有“销售:话术总结优缺点”,涉及产品特点、服务优势、目标客户需求和痛点等方面。 详情: 入库时间:2023/10/30 在销售方面,还有“销售:定制销售解决方案”,涵盖企业产品和服务内容、客户需求和参数等内容。 详情: 入库时间:2023/10/30 在客服方面,有“客服:定制客服话术”,包含产品知识、使用方法等 13 个关键词库。 详情: 入库时间:2023/10/30 腾讯运营在智能客服方面的应用: ChatGPT 承担客服功能,通过告知其具体客服身份,要求其解答用户问题并进行私域流量转化。 ChatGPT 能够理解社区用户的评论和问题,并生成合适的回复,管理社区互动,模拟运营人的语言风格,与用户进行更自然的互动。 ChatGPT 可以监测舆情和热点,从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析。 其他相关案例:
2024-12-17
AI应用在测试领域的案例
以下是 AI 应用在测试领域的一些案例: 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-13
RAG 案例
以下是为您提供的关于 RAG 案例的相关内容: 在商业化问答场景中,存在大模型根据知识库回复不准确的情况,如回答牛头不对马嘴、未依据正确内容回答等错误场景,这凸显了优化大模型根据知识库回答准确性的重要性,而在 AI 领域中,此优化过程称为 RAG。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。 在案例研究中: 案例 B 中,用户查询特定研究论文中的“表格 8”及所列因变量,ChatDOC 能有效检索整个表格,包括标题和内容,准确响应查询,而 Baseline 模型未检索到真正的“表格 8”。 OpenAI 在提升 RAG 准确率方面,从 45%开始,尝试多种方法,如假设性文档嵌入和精调嵌入等效果不理想,通过调整信息块大小、嵌入不同内容部分、Reranking、对不同类别问题特别处理、提示工程、查询扩展等方法,最终达到 98%的准确率,强调了模型精调和 RAG 结合使用的潜力。
2024-12-12
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
是否有针对访谈收集的数据做分析的智能体或应用?
目前存在针对访谈收集的数据做分析的智能体或应用。例如,在个人实操案例中,有人为了做 AI 访谈,搭建了一个 AI 访谈 bot,希望借此了解朋友们做访谈的意愿和产出内容的质量水平,同时还希望这个 bot 具备内容推荐的能力。 智能体在各种应用中扮演重要角色,如自动驾驶中感知周围环境并做出驾驶决策,家居自动化中根据环境和用户行为自动调节智能设备,游戏 AI 中的对手角色和智能行为系统,金融交易中的智能交易算法,客服聊天机器人通过自然语言处理提供自动化客户支持,以及机器人中集成的智能控制系统等。 设计和实现一个智能体通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。首先要明确智能体需要实现的目标或任务,设计传感器系统采集环境数据,定义决策算法,设计执行器或输出设备,对于学习型智能体还需设计学习算法以从经验中改进。
2024-12-15
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
AI 辅助信息收集与分析
以下是关于 AI 辅助信息收集与分析的相关内容: 利用 AI 辅助写作课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。需记住,AI 是辅助,不能替代研究者的专业判断和创造性思维,要保持批判性思维,确保研究质量和学术诚信。 在制定和优化 SOP 方面,AI 助手能发挥重要作用: 1. 数据收集与分析:帮助收集和分析工作数据,找出瓶颈和问题,提出改进建议以优化流程。 2. 自动化流程:通过 RPA 技术自动化重复性高、标准化强的工作流程,提高效率。 3. 实时监控与反馈:实时监控工作流程,及时发现问题并反馈,以便及时调整。 人工智能在汽车行业的应用案例: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能,预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等,允许语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-10-29
资讯收集机器人
以下是关于资讯收集机器人的相关信息: 上周使用 GPT4 创建了一个信息收集机器人,用于监控指定推特账户,将信息交给 ChatGPT 翻译并总结,然后发送到 Discord 指定频道。具体步骤包括:简单说明需求让 GPT4 给出建议,获取更具体可执行方法,用 zapier 创建机器人,触发器选择推特 APP 并绑定账号,将信息发送给 ChatGPT 并设置处理方式和输出格式,最后链接 Discord 创建机器人并选择发送频道和信息。详细内容和 zapier 机器人模板可参考:https://op7418.zhubai.love/posts/2251721691841511424 。 本地部署资讯问答机器人可通过 Langchain + Ollama + RSSHub 实现 RAG,包括加载所需库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型);从订阅源获取内容,通过函数从指定 RSS 订阅 url 提取内容并处理;为文档内容生成向量,使用文本向量模型 bgem3(https://huggingface.co/BAAI/bgem3),从 hf 下载好模型后通过函数利用 FAISS 创建高效向量存储。 介绍了一些大模型,如 Google 推出的 Gemma(下载的是 7B 模型)、欧洲法国 Mistral AI 团队推出的 Mistral(7B 模型)和 Mixtral(87B 的 MoE 模型)、阿里巴巴推出的 Qwen(通义千问,7B 模型)。 强调了 RSS 作为数据源的作用,虽然在日常获取资讯时手机 APP 基本够用,但对于特定需求从某些网站获取最新通知或相关信息,如获取 https://openai.com/blog 的最新更新、https://www.producthunt.com 每天的热门产品、https://github.com/trending 每天的热门开源项目等,RSS 仍有其优势。
2024-10-09
构建新闻收集的 Agent 工具
以下是构建新闻收集的 Agent 工具的相关内容: 1. 可以通过 Coze 建立定时任务,执行工作流二,并添加分析文章和搜索文章等能力,变成一个消息情报官的 Agent,能够获得想要的领域或行业情报,还能深入挖掘相关情报信息。然后发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等平台即可使用。可以构建多个分身,收集整理不同领域和行业的情报信息。 2. 最近 wiseflow 首席情报官很火,但几乎没有教程和搭建成功案例,其代码存在问题且依赖收费的 OpenAI API。可行的 Free 方案是通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。 3. 可以通过读 SQLiteDB 或者获取 RSS XML 页面 http://127.0.0.1:4000/feeds/all.atom 来获取更新的公众号。在公众号订阅不多时,建议使用分析 XML 页面。由于本地部署无法直接将文章同步到 Coze,可以选择使用多维表格及飞书机器人 API 的方式来实现中间数据的传递。在多维表格中设置状态转换,以了解文章是否已被解读和推送。
2024-09-06
有什么链接收集了常用、效果好的各个方向或者是领域的具体提示词吗
以下是一些收集了常用、效果好的各个方向或者领域的具体提示词的链接: 另外,按照对话次数统计的 TOP100 榜单对应的链接已发布在 BeBeGPTs 上,可通过原文链接访问,网址为:glbai.com。在法律领域,也有一些常用的 Prompt 场景,例如案例检索,最好使用法律行业垂类的 AI 产品。以下是一些案例检索的 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。
2024-08-24
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么
目前在游戏领域最前沿的 AI 技术点包括以下方面: 1. 生成式 AI:这是一种机器学习类别,计算机能根据用户提示生成新内容,在文本和图像方面应用较为成熟,甚至可用于创造具有完整性格的虚拟角色。 2. 智能对手的进化:早期游戏中的虚拟对手只是简单脚本程序,如今借助更快的微处理器和云技术,可构建大型神经网络,实现更复杂的模式识别和表示,使对手具备学习能力。 3. 未来发展方向: 探索将游戏环境中的成果迁移至现实世界,虽然在特定游戏环境中成果显著,但推广到现实世界仍面临诸多挑战。 利用 AIGC 技术实现游戏产业的生产力革命,如生成新的游戏内容、驱动非玩家角色、改进图像和声音效果等。 为通用人工智能的孵化提供帮助,经复杂游戏训练后的人工智能体有望在通用人工智能领域发挥作用。 此外,狭义的游戏人工智能研究致力于创造类人水平的智能体在多种游戏中战胜人类玩家,广义的还包括探索用于设计和开发游戏的人工智能技术,如游戏图像生成、关卡生成等。随着深度学习技术的发展,人工智能不仅用于“玩游戏”,还用于游戏的设计、开发和测试等多个方面。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
文字生成视频有哪些好的应用
以下是一些文字生成视频的好的应用: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意的是,Runway 是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 6. Genmo:相较于 Pika 和 Runway,生成视频的清晰度大幅提高,人像的稳定性和美观度强很多,支持镜头控制且控制粒度更细,但还没开放图片生成视频,只能用文字提示词。 7. VIGGLE:能直接通过文字描述让任何静态图动起来,能做各种动作,还能直接文字生成视频,进行各种角色混合和动作替换。其核心技术基于 JST1 模型,该模型是首个具有实际物理理解能力的视频3D 基础模型,能够根据用户需求,让任何角色按照指定方式进行运动。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。内容由 AI 大模型生成,请仔细甄别。
2024-12-21
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
如何将AI应用于学术研究
将 AI 应用于学术研究可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取收集资料中的关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的课题大纲。 5. 撰写文献综述:借助 AI 工具撰写文献综述部分,保证内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题的逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题的原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。 AI 的技术历史和发展方向以及目前最前沿的技术点: 技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涉及神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涵盖语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:有大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:包括论文阅读、模型实现、实验设计等。 应用方向: 编程基础:如 Python、C++等。 机器学习基础:像监督学习、无监督学习等。 深度学习框架:例如 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:涉及数据采集、清洗、特征工程等。 模型部署:包含模型优化、模型服务等。 行业实践:有项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-21