Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想收集一些AIGC行业应用的案例

Answer

以下是一些 AIGC 行业应用的案例:

  • 在内容创作方面:
    • 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。
    • 图像生成:使用 Stable Diffusion、DALL-E 等模型生成艺术作品、照片等。
    • 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。
  • 在制造业领域:
    • 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。
    • 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。
    • 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。
    • 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。
    • 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。
  • 在医疗行业:
    • 疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了一种名为 Halicin 的新型广谱抗生素。
  • 在广告营销行业:
    • 从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,还能降低内容制作成本并加速创意实现。
Content generated by AI large model, please carefully verify (powered by aily)

References

十七问解读生成式人工智能

"大家好!这篇文章收集了社区小伙伴们向我提出的日常问题以及我的一些答复,算是一个全面的汇总。鉴于文章的科普性质和广泛的受众,我将通过问答的形式,尽量使用浅显易懂的语言来介绍一些基本概念,希望大家能有所收获。"[heading1]问题一、AIGC是什么?[content]AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC在内容创作、广告、媒体等领域有着广泛的应用。1.文字生成:使用大型语言模型(如GPT系列模型)生成文章、故事、对话等内容。2.图像生成:使用Stable Diffusion、DALL-E等模型生成艺术作品、照片等。3.视频生成:使用Runway、KLING等模型生成动画、短视频等。[heading1]问题二、AIGC、UGC、PGC的关系是什么?[content]AIGC、UGC和PGC都是内容生成的不同方式,这三种内容生成方式的主要区别在于内容的创作者和生成方式。1.AIGC(AI-Generated Content):由人工智能生成的内容。AI通过学习大量的数据,能够自动生成文本、图像、视频等内容。AIGC的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。2.UGC(User-Generated Content):由用户生成的内容。用户通过社交媒体、博客、论坛等平台发布自己的内容,如文章、评论、照片、视频等。UGC的优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。3.PGC(Professionally-Generated Content):由专业人士或机构生成的内容。专业团队或机构根据特定的标准和流程创作高质量的内容,如新闻报道、影视作品、专业文章等。PGC的优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。

问:有制造业的 AI 应用吗?

在制造业领域也有一些AIGC(AI Generated Content)的应用:1.产品设计和开发:利用AI生成工具如Adobe Firefly、Midjourney等,可以根据文字描述快速生成产品的3D模型、渲染图、插图等设计元素,大幅提高产品设计效率。2.工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。3.设备维护和故障诊断:利用AI模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。4.供应链管理:AI可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。5.客户服务:基于对话模型的AI客服机器人,可以自动生成个性化的客户回复,提升客户体验。总的来说,AIGC技术正在制造业各环节得到广泛应用,从产品设计到生产管理再到客户服务,都能发挥重要作用,提高企业的效率和竞争力。内容由AI大模型生成,请仔细甄别

开发:AI应用大模型商业化落地现状与思考

接下来,我们将深入了解大模型在商业化过程中的实际应用情况。首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!广告营销行业目前仍然是AIGC()应用最多的业务场景之一,大模型在营销行业从初期的市场分析、中期的客户转化以及后期的客户复购均可参与打开营销生态新思路,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过AI+设计相关的SOP来提高效率。大模型的应用不仅为营销策略提供了新的思路,还能为消费者带来更加个性化、智能化和互动性强的体验。此外,它们还能显著降低内容制作的成本并加速创意的实现过程。

Others are asking
AIGC和AGI的区别
AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,包括文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AGI(通用人工智能)则是一种让机器具备像人类一样的通用智能的目标,能够理解、学习和处理各种不同的任务和领域。 AIGC 侧重于内容的生成,是通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。而 AGI 追求的是更广泛和通用的智能能力。 例如,AIGC 可以生成文章、艺术作品、短视频等具体的内容形式;AGI 则是期望机器能够像人类一样进行思考、推理、解决复杂的综合性问题等。 总的来说,AIGC 是 AGI 在内容生成方面的一种具体应用,而 AGI 是更宏观和高远的人工智能发展目标。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 能进行 AIGC 的产品项目和媒介众多。在语言文字类,有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;在语音声音类,有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等;在图片美术类,有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了 Midjourney、谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等。 AIGC、UGC 和 PGC 都是内容生成的不同方式。UGC 是由用户生成的内容,反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。AIGC 的优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景,如自动化新闻、广告创作等。
2025-01-19
什么是AIGC
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,其应用领域广泛,包括但不限于内容创作、广告、媒体等。 例如,在文字生成方面,可使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容;在图像生成方面,可使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等;在视频生成方面,可使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 是由用户生成的内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 是由专业人士或机构生成的内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,媒介也多样。语言文字类有 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等;语音声音类有 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits;图片美术类有早期的 GEN 等图片识别/生成技术,去年大热的扩散模型带火了生成质量很高的 Midjourney、先驱者谷歌的 Disco Diffusion、一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型,代码模型权重已公开发布,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion。
2025-01-10
AIGC是什么
AIGC 即 AI generated content,又称为生成式 AI,是一种利用人工智能技术生成各种类型内容的应用方式。 这种技术能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容。AIGC 的应用非常广泛,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。 在内容生成方面,AIGC 包括文字生成(如使用大型语言模型 GPT 系列模型生成文章、故事、对话等)、图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等)、视频生成(如使用 Runway、KLING 等模型生成动画、短视频等)。 AIGC 与 UGC(普通用户生产)、PGC(专业用户生产)都是内容生成的不同方式。UGC 由用户生成内容,优势在于内容丰富多样,能反映用户真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-01-08
Aigc国漫风格制作流程
以下是 AIGC 国漫风格的制作流程: 1. 主题与文案:确定国漫风格作品的主题,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要的国漫风格意向,背景可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用相关的 AIGC 绘图平台,输入关键词,生成并挑选出满意的底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 相关的海报成果。 此外,还有一些相关的案例供您参考: 在制作海报方面,使用无界 AI 等软件,按照需求场景、大致流程进行操作。 在文旅视频制作中,如山西文旅宣传片,运用 Defense 及 SD 制作艺术字,通过 PS 处理和反复跑图提高画面完整度。 在游戏 PV 制作中,如《追光者》,结合多种 AI 工具,包括 chaGPT、MJ 绘图、SD 重绘等,进行前期脑暴拉片和风格参考情绪版的准备。
2025-01-08
Aigc国漫风格视频
以下是为您整理的相关内容: 关于 AIGC 国漫风格视频: 设计方面包括女执事、智能体、守护者等元素,有 3 种形态,平常翅膀呈隐藏状态,是人类的保护者和服务者。比如智小美,身材比 1:2,风格与智小鹿一脉相承但更智能,美貌与智慧并存,是智小鹿的妹妹。其设计灵感综合了导演、猫叔墨镜、影视元素等,猫叔在社区更新的万字编剧日记对创作 AIGC 有很大帮助。 关于 AIGC 小红书博主: 列举了多位小红书博主,如徐若木、笑笑(约稿)、吉吉如意令、发射井、惟玮、Sllanvivi、巧琢、上官文卿|ZHEN、AI 离谱社、布谷咕咕咕、果果(禾夭夭)、壹见空间川上扶蘇、Goooodlan🍅古德兰等,涵盖了商业插画师、约稿、头像、国风人物、创意设计、视频、动画设计教程、壁纸、景观设计等不同领域。 关于 AIGC Weekly88: 封面提示词为“abstract network out of glass made of holographic liquid crystal,dark background,blue light reflections,symmetrical composition,centered in the frame,highly detailed,hyperrealistic,cinematic lighting,in the style of Octane Rendear 16:9style rawpersonalizev 6.1”,可查看更多风格和提示词的链接为:https://catjourney.life/ 。这周训练了一个 FLUX Lora 模型,为褪色胶片风格,推荐权重 0.6 0.8,适合生成毛茸茸的动物玩偶,人像会偏向复古褪色的胶片风格,在玻璃制品产品展示摄影方面表现很好,整体景深模糊自然柔和,下载链接为:https://www.liblib.art/modelinfo/4510bb8cd80142168dc42103d7c20f82?from=personal_page
2025-01-08
AI营销案例
以下是一些 AI 营销案例: 1. 大淘宝设计部 2023 年度 AI 设计实践: 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词可快速完成准确的超级符号主视觉,如双 11 AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日 品牌符号系列海报等案例。 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,根据不同需求稳定输出定制化 IP 形象,如天猫 AI 玩行动 品牌联合海报、天猫双 11 出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用等案例。 传播&投放:包括双 11 超级发布 品牌联合海报、媒介投放开屏海报等案例。 大促营销:通过 AI 生成图像或素材,结合平面合成及修正,如淘宝天猫大促视觉、双 11 大促 横向会场版头模板化应用、天猫小黑盒 新品联名等案例。 2. AI 在活动策划中的应用: 活动主题及内容生成:根据活动目标、参与者背景等信息生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 邀请函和宣传文案生成:基于活动信息生成吸引人的邀请函和宣传文案,如微软在 Build 大会上使用 AI 生成 8000 多份个性化的邀请函。 现场活动管理:利用计算机视觉、语音识别等辅助管理活动现场的人流、秩序等,例如基于人群密度的通道引导、实时翻译等。 虚拟助手:AI 对话系统作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务,例如 Replika 提供的智能虚拟活动助手应用。 活动反馈分析:自动分析活动反馈(文字、语音等),总结关键观点和改进建议,例如飞书和钉钉的会议总结功能。 活动营销优化:基于参与者行为数据优化营销策略,实现个性化营销,例如针对目标受众的定向广告投放等。 3. 其他案例: 营销:蓝色光标 X 京东|AIGC 代言人营销新模式,OPEN AD 时代来临:在代言人项目中探索出了行业崭新的 AIGC 精细化作业模式,革新传统代言人 TVC 制作流程。 营销:定制营销报告:涵盖汇报对象身份、销售数据、财务报告、市场分析、客户反馈、营销效果评估等方面。 办公:高效做 PPT:用 ChatGPT 生成 Markdown 语法内容,再借用 MindShow 工具转换为精美的 PPT。
2025-01-21
AI 营销最佳实践或案例
以下是一些 AI 营销的最佳实践或案例: 大淘宝设计部 2023 年度 AI 设计实践: 1. 品牌超级符号映射:根据品牌符号的模型训练和结构控制,用户输入丰富关键词可快速完成准确的超级符号主视觉。案例包括双 11 AI 创作赢红包、双 11 联合传播猫头海报&花车大巡游、超级品类日 品牌符号系列海报。 2. 品牌 IP 形象 AI 生成:训练特定的天猫/淘宝/营销 IP 公仔模型,根据不同需求稳定输出定制化 IP 形象,还可形成素材库。案例有天猫 AI 玩行动 品牌联合海报、天猫双 11 出游主题喵卡、淘宝天猫一起冲亚、天猫 U 先公仔三视图生成及应用。 3. 传播&投放:案例有双 11 超级发布 品牌联合海报、媒介投放开屏海报。 4. 大促营销:通过 AI 生成图像或素材,结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,快速生成多个设计变体并迭代优化。案例包括淘宝天猫大促视觉、双 11 大促 横向会场版头模板化应用、天猫小黑盒 新品联名。 AI 在活动策划中的应用案例: 1. 活动主题及内容生成:根据活动目标、参与者背景等信息,生成合适的活动主题和内容框架建议,例如通过对话生成模型提出活动主题和议程草案。 2. 邀请函和宣传文案生成:基于活动信息生成吸引人的邀请函和宣传文案,增强宣传效果。例如微软在 Build 大会上使用 AI 生成了 8000 多份个性化的邀请函。 3. 现场活动管理:利用计算机视觉、语音识别等辅助管理活动现场的人流、秩序等。例如基于人群密度的通道引导、实时翻译等。 4. 虚拟助手:AI 对话系统作为虚拟活动助手,为参与者提供信息查询、问题咨询等服务。例如 Replika 提供了智能的虚拟活动助手应用。 5. 活动反馈分析:自动分析活动反馈(文字、语音等),总结关键观点和改进建议。例如飞书和钉钉的会议总结功能。 6. 活动营销优化:基于参与者行为数据,优化营销策略,实现个性化营销。例如针对目标受众的定向广告投放等。 AIGC 商业视频落地经验分享: 1. AIPO 校园创投活动:10 月 20 号将在全国 20 多所高校举办线下 AIPO 模拟创业者和投资人的活动,校园大使确定举办校内线下活动的报名今晚 8 点半截止。 2. AI 商业片分享:邀请自媒体博主 EM7 和南柒老师讲解如何使用 AIGC 工具完成品牌方合作,包括实战项目、合作品牌、案例区分、制作流程等,并提及不同平台发作品的区别。 3. 品牌营销与营销的概念差异:品牌营销侧重于让用户记住品牌,加深大众记忆;营销则以销售和转化为目的,更着重于产品本身。 4. AI 在品牌广告中的应用案例:如伊利的黏土风格广告,通过特定元素复原运动员形象,属于品牌广告。 5. AI 在营销广告中的应用案例:某宝好物节的广告,旨在促进消费,属于营销广告。 6. AI 视频制作的突破与挑战:路特斯的广告在时间有限的情况下仍做出尝试和突破,早期 AI 技术下的视频存在一些痛点,后续不断改进。
2025-01-20
国内优秀Agent应用案例
以下是一些国内优秀的 Agent 应用案例: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 3. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 4. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色,提供更深入的环境感知和记忆功能。
2025-01-19
国内优秀智能体案例
以下是一些国内优秀智能体案例: 在车辆使用指南维度,多个大模型表现优异,达到 80 分以上,在操作指南、车辆故障诊断、维修保养等任务上具备较高交互成熟度。 在汽车场景中,部分 13 14B 中小模型超过云端闭源模型,展现出端侧模型满足用户需求的良好能力和巨大潜力。 在社交方向,有用户注册后先创建自己的智能体,让其与他人的智能体聊天,然后真人介入的有趣场景。 字节推出的“扣子”是用于开发下一代 AI 聊天机器人的构建平台。 国内存在如 Dify.AI 等智能体开发平台。
2025-01-19
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
消费行业ai案例
以下是一些消费行业的 AI 案例: 《2024 生成式 AI 商业落地白皮书》由火山引擎、RollingAI 和 InfoQ 研究中心联合发布,为 CXO 提供 AI 转型战术指南。书中通过 240 个应用场景地图,展示了 AI 在消费零售等行业的落地案例,探讨了 AI 基础设施构建、项目落地准备和快速补齐能力差距等关键问题,并提出了八步实施大模型接入的方法论。 关于 AI 的最强大之处之一是它能使产品个性化用户体验。这方面的早期应用已经出现在教育科技和搜索中,预计这种定制将是许多 AI 启用产品的核心价值主张。 此外,人工智能在汽车行业也有广泛应用: 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。 车辆安全系统:AI 被用于增强车辆的安全性能,如自动紧急制动、车道保持辅助和盲点检测系统。 个性化用户体验:AI 可以根据驾驶员的偏好和习惯来调整车辆设置。 预测性维护:通过分析车辆的实时数据,AI 可以预测潜在的故障和维护需求。 生产自动化:在汽车制造过程中,AI 被用于自动化生产线,提高生产效率和质量控制。 销售和市场分析:汽车公司使用 AI 来分析市场趋势、消费者行为和销售数据。 电动化和能源管理:AI 在电动汽车的电池管理和充电策略中发挥作用。 共享出行服务:AI 支持的共享出行服务,使用 AI 来优化路线规划、调度车辆和定价策略。 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。 车辆远程监控和诊断:AI 系统可以远程监控车辆状态,提供实时诊断和支持。
2025-01-14
收集资料,整合网站链接
以下是关于利用 AI 收集资料和整合网站链接的相关内容: 利用 AI 收集资料: 明确文章主题后,可借助 AI 高效收集相关资讯。例如使用 Perplexity.AI,访问其网站并使用搜索功能,为获取更专业深入的结果,可启用 Pro 功能(每天有一定次数免费使用,常使用可考虑开通会员)。在搜索框输入具体 Prompt 如“查找关于 OpenAI 对马斯克言论回应的博客文章”,快速定位相关资讯。获取搜索结果后,点击回答内容下方的拷贝按钮获取引用网站链接。同理,微软的 Bing 搜索引擎等具备联网搜索功能的工具也能实现类似功能,帮助快速搜集大量资料,提升文章专业度和说服力。 整合网站链接: 1. 整理资料时,可使用月之暗面开发的 Kimi 这个 AI 会话助手。它具备读取网页内容并生成一定内容的能力,读取完毕会显示绿色标点提示。但它阅读能力有限,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料确保有效读取和理解。 2. 以下是一些收录 GPTs 的网站: Hallidai:,特点是索引了周日为止 𝕏 上公开提及的全部 GPTs 数据,后面会每天持续更新,用提及每个 GPTs 的点赞数最高的 tweet 作为初始的 upvotes 来展示热度,也提供了大家 upvote 自己喜欢的 GPTs 的功能,支持搜索,用 Semantic Search 的方式方便大家快速找到想要的 GPTs。 GPTStore:,特点是内容全,有搜索,有热度。 Aigenthub:,特点是有搜索,可讨论,内容全。 GPTs Hunt:,特点是 9557 GPTs。 GPTsPartner:,特点是每日更新,有搜索。 GPTseek:,特点是用户可投票筛选高质量 GPTs,有分类筛选和提交自己的 GPTs 功能,有热度,内容全。
2025-01-14
是否有针对访谈收集的数据做分析的智能体或应用?
目前存在针对访谈收集的数据做分析的智能体或应用。例如,在个人实操案例中,有人为了做 AI 访谈,搭建了一个 AI 访谈 bot,希望借此了解朋友们做访谈的意愿和产出内容的质量水平,同时还希望这个 bot 具备内容推荐的能力。 智能体在各种应用中扮演重要角色,如自动驾驶中感知周围环境并做出驾驶决策,家居自动化中根据环境和用户行为自动调节智能设备,游戏 AI 中的对手角色和智能行为系统,金融交易中的智能交易算法,客服聊天机器人通过自然语言处理提供自动化客户支持,以及机器人中集成的智能控制系统等。 设计和实现一个智能体通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。首先要明确智能体需要实现的目标或任务,设计传感器系统采集环境数据,定义决策算法,设计执行器或输出设备,对于学习型智能体还需设计学习算法以从经验中改进。
2024-12-15
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
AI 辅助信息收集与分析
以下是关于 AI 辅助信息收集与分析的相关内容: 利用 AI 辅助写作课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。需记住,AI 是辅助,不能替代研究者的专业判断和创造性思维,要保持批判性思维,确保研究质量和学术诚信。 在制定和优化 SOP 方面,AI 助手能发挥重要作用: 1. 数据收集与分析:帮助收集和分析工作数据,找出瓶颈和问题,提出改进建议以优化流程。 2. 自动化流程:通过 RPA 技术自动化重复性高、标准化强的工作流程,提高效率。 3. 实时监控与反馈:实时监控工作流程,及时发现问题并反馈,以便及时调整。 人工智能在汽车行业的应用案例: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能,预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等,允许语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-10-29
资讯收集机器人
以下是关于资讯收集机器人的相关信息: 上周使用 GPT4 创建了一个信息收集机器人,用于监控指定推特账户,将信息交给 ChatGPT 翻译并总结,然后发送到 Discord 指定频道。具体步骤包括:简单说明需求让 GPT4 给出建议,获取更具体可执行方法,用 zapier 创建机器人,触发器选择推特 APP 并绑定账号,将信息发送给 ChatGPT 并设置处理方式和输出格式,最后链接 Discord 创建机器人并选择发送频道和信息。详细内容和 zapier 机器人模板可参考:https://op7418.zhubai.love/posts/2251721691841511424 。 本地部署资讯问答机器人可通过 Langchain + Ollama + RSSHub 实现 RAG,包括加载所需库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型);从订阅源获取内容,通过函数从指定 RSS 订阅 url 提取内容并处理;为文档内容生成向量,使用文本向量模型 bgem3(https://huggingface.co/BAAI/bgem3),从 hf 下载好模型后通过函数利用 FAISS 创建高效向量存储。 介绍了一些大模型,如 Google 推出的 Gemma(下载的是 7B 模型)、欧洲法国 Mistral AI 团队推出的 Mistral(7B 模型)和 Mixtral(87B 的 MoE 模型)、阿里巴巴推出的 Qwen(通义千问,7B 模型)。 强调了 RSS 作为数据源的作用,虽然在日常获取资讯时手机 APP 基本够用,但对于特定需求从某些网站获取最新通知或相关信息,如获取 https://openai.com/blog 的最新更新、https://www.producthunt.com 每天的热门产品、https://github.com/trending 每天的热门开源项目等,RSS 仍有其优势。
2024-10-09
构建新闻收集的 Agent 工具
以下是构建新闻收集的 Agent 工具的相关内容: 1. 可以通过 Coze 建立定时任务,执行工作流二,并添加分析文章和搜索文章等能力,变成一个消息情报官的 Agent,能够获得想要的领域或行业情报,还能深入挖掘相关情报信息。然后发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等平台即可使用。可以构建多个分身,收集整理不同领域和行业的情报信息。 2. 最近 wiseflow 首席情报官很火,但几乎没有教程和搭建成功案例,其代码存在问题且依赖收费的 OpenAI API。可行的 Free 方案是通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。 3. 可以通过读 SQLiteDB 或者获取 RSS XML 页面 http://127.0.0.1:4000/feeds/all.atom 来获取更新的公众号。在公众号订阅不多时,建议使用分析 XML 页面。由于本地部署无法直接将文章同步到 Coze,可以选择使用多维表格及飞书机器人 API 的方式来实现中间数据的传递。在多维表格中设置状态转换,以了解文章是否已被解读和推送。
2024-09-06
有什么应用可以通过每天录一段口水话的语音,然后自动整理为日记
目前尚未有专门针对每天录制一段口水话语音就能自动整理为日记的应用。但一些语音转文字的应用,如讯飞语记、百度语音助手等,结合一些笔记类应用,如印象笔记、有道云笔记等,可能在一定程度上帮助您实现类似的功能。您可以先将语音转换为文字,然后再手动整理到笔记应用中形成日记。
2025-01-23
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
人工智能的场景应用
人工智能(AI)的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新疗法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 实现动态定价。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,AI 绘画在以下场景也有应用: 广告设计:快速生成创意概念图,为广告策划提供灵感和初稿。 游戏开发:创建游戏场景、角色形象,提高开发效率。 影视制作:辅助生成特效场景、概念设计。 建筑设计:帮助构想建筑外观和内部布局。
2025-01-23
哪些应用或者是web服务可以使用api
以下是一些可以使用 API 的应用和 Web 服务: 1. TMDB 提供了搜索电影的 API,其文档网址为 https://developer.themoviedb.org/reference/searchmovie 。在该网站的开发者相关页面或 API 文档中,可获取 API 规则。通过在右上角的认证里能看到 API 读访问令牌,配置文件中包含了如 url、请求方法 get、查询参数 query 和 language 等。输入关键词和相关语言设置,如“奥本海默”和“zhCN”,点击 Try it 即可获取数据,返回的数据格式为 JSON。 2. RAG 加速器的数据抽取服务,基于 FastAPI 和 Postgresql 搭建,并提供了标准的 REST API 接口,附带有 dockercompose 文件方便搭建服务环境。该服务支持定义并持久化“抽取器”,包含抽取结构的图式(Schema)、抽取上下文的指令(Prompt)和抽取样例(Reference examples)。此外,提供了提交文件进行抽取的端点和通过 RemoteRunnable 使抽取服务在 LangChain Expression Language链中更易用的端点。预设了基于 MIME 类型的解析器,支持 PDF 和 HTML 文档的解析,还可扩展支持其他文件类型。使用时可通过 JSON 模式定义提取信息、指定样例提升提取结果质量,传入原始文本或二进制文件。 如果您对 Action 很感兴趣,可以从以下方向继续学习: 1. 系统学习 API 相关知识。 2. 在网上寻找可用的 API 进行练习。 3. 发掘 GPT Action 的更多潜力。
2025-01-23
AI在土木工程领域的应用
AI 在土木工程领域有以下应用: 1. 绘图方面:存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如 CADtools 12(Adobe Illustrator 插件,添加 92 个绘图和编辑工具)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件,帮助创建复杂 CAD 模型)、ParaMatters CogniCAD(基于 AI 的 CAD 软件,根据输入自动生成 3D 模型),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供基于 AI 的生成设计工具。但使用这些工具通常需要一定的 CAD 知识和技能,初学者建议先学习基本建模技巧。 2. 交通方面:可用于交通管理,优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流配送方面:能够优化物流路线和配送计划,降低运输成本。 4. 教育方面:用于个性化学习,为学生提供定制化学习体验。 5. 农业方面:分析农田数据,提高农作物产量和质量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22