Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 辅助信息收集与分析

Answer

以下是关于 AI 辅助信息收集与分析的相关内容:

利用 AI 辅助写作课题的步骤和建议:

  1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。
  2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。
  3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。
  4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。
  5. 撰写文献综述:借助 AI 工具确保内容准确完整。
  6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。
  7. 数据分析:若课题涉及,使用 AI 数据分析工具处理和解释数据。
  8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。
  9. 生成参考文献:使用 AI 文献管理工具生成正确格式。
  10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。
  11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。需记住,AI 是辅助,不能替代研究者的专业判断和创造性思维,要保持批判性思维,确保研究质量和学术诚信。

在制定和优化 SOP 方面,AI 助手能发挥重要作用:

  1. 数据收集与分析:帮助收集和分析工作数据,找出瓶颈和问题,提出改进建议以优化流程。
  2. 自动化流程:通过 RPA 技术自动化重复性高、标准化强的工作流程,提高效率。
  3. 实时监控与反馈:实时监控工作流程,及时发现问题并反馈,以便及时调整。

人工智能在汽车行业的应用案例:

  1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。
  2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能,预防事故。
  3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。
  4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机和维修成本。
  5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。
  6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。
  7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。
  8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。
  9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等,允许语音控制车辆功能、获取信息和娱乐内容。
  10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何利用AI写课题

[title]问:如何利用AI写课题利用AI技术来辅助写作课题可以提高效率并激发新的创意。以下是一些步骤和建议:1.确定课题主题:明确你的研究兴趣和目标,选择一个具有研究价值和创新性的主题。2.收集背景资料:使用AI工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。3.分析和总结信息:利用AI文本分析工具来分析收集到的资料,提取关键信息和主要观点。4.生成大纲:使用AI写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。5.撰写文献综述:利用AI工具来帮助撰写文献综述部分,确保内容的准确性和完整性。6.构建方法论:根据研究需求,利用AI建议的方法和技术来设计研究方法。7.数据分析:如果课题涉及数据收集和分析,可以使用AI数据分析工具来处理和解释数据。8.撰写和编辑:利用AI写作工具来撰写课题的各个部分,并进行语法和风格的检查。9.生成参考文献:使用AI文献管理工具来生成正确的参考文献格式。10.审阅和修改:利用AI审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。11.提交前的检查:最后,使用AI抄袭检测工具来确保课题的原创性,并进行最后的格式调整。请记住,AI工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用AI进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。内容由AI大模型生成,请仔细甄别。

SOP + AI:打造职场高效能人士的秘密武器

AI助手可以帮助你收集和分析工作中的数据,找出工作流程中的瓶颈和问题。通过对数据的分析,AI助手能够提出改进建议,帮助你优化工作流程。[heading4]2.自动化流程[content]AI助手能够自动化一些重复性高、标准化强的工作流程。比如,通过RPA(机器人流程自动化)技术,AI助手可以自动执行某些固定的工作步骤,大大提高效率。[heading4]3.实时监控与反馈[content]AI助手能够实时监控工作流程,及时发现问题并反馈给你。这样,你可以在第一时间进行调整,确保工作流程的顺畅运行。

问:人工智能在汽车行业的应用案例

[title]问:人工智能在汽车行业的应用案例人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例:1.自动驾驶技术:利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。2.车辆安全系统:AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。3.个性化用户体验:AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。4.预测性维护:通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。5.生产自动化:在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。6.销售和市场分析:汽车公司使用AI来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。7.电动化和能源管理:AI在电动汽车(EV)的电池管理和充电策略中发挥作用,通过优化电池使用和充电时间来提高能源效率和延长电池寿命。8.共享出行服务:AI支持的共享出行服务,如Uber和Lyft,使用AI来优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。9.语音助手和车载娱乐:AI驱动的语音助手,如Amazon Alexa Auto和Google Assistant,允许驾驶员通过语音命令控制车辆功能、获取信息和娱乐内容。10.车辆远程监控和诊断:AI系统可以远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取相应措施。

Others are asking
AI音乐
AI 音乐相关内容如下: 在进行 AI 短片配音时,AI 音乐部分的操作如下: 点击进入 AI 音乐界面,可选择人声歌曲或纯音乐。 选择后描述想要的音乐风格,如民谣、流行、嘻哈、国风等。 若为人声歌曲,可自己填写歌词或通过智能歌词按钮让 AI 依据简单词语提示创作歌词。 音乐库选项中,剪映提供了各种风格的音乐,选择合适的添加到音轨。 音效库方面,在搜索框输入相关音效词,如开门声,试听后选择合适的添加到音轨。 AI 生成音乐的工具是利用人工智能技术创作、编排和生成音乐的软件平台。它们能分析大量音乐数据,学习音乐模式和结构,根据用户输入或指令创作新作品。推荐的 AI 音乐产品有: Udio:由前 Google DeepMind 工程师开发,通过文本提示生成高质量音乐作品。 Suno AI:通过深度学习技术将用户输入转化为高质量音乐作品。 人工智能音频初创公司列表中与音乐创作与制作相关的有: (被 Apple 收购)帮助品牌与受众建立更深层次连接。 下一代音乐制作人。 由 AI 驱动的软件引擎,可生成音乐并对手势等作出反应。 全球最大的音乐教育平台。 用于创作歌曲和音频录制的应用程序。 提供无缝录音室体验的一体化在线协作平台。 专业音频、语音、声音和音乐的扩展服务。 视频编辑的音频解决方案。 由 AI 驱动的音乐工作室。 为音乐演奏者提供世界级声音的民主化访问。 AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 为音乐人等提供 AI 驱动的混音服务。 为创作者提供在线音乐软件及相关服务。
2025-02-15
用AI写PPT,prompt用什么?
如果您想用 AI 写 PPT,以下是一些关于 prompt 的建议: 1. Prompt 的本质是用编程语言的结构加上自然语言的内容打造 AI 指令,让 AI 可以像理解程序一样理解人类的指令。比较友好易懂的是 Markdown 的结构化语言格式。例如,在写流程时,用“”代表层级,“”代表一级类目,“”代表子类目,这样能明确 prompt 的执行顺序。 2. 每个单独的提示词叫 tag(关键词)。支持的语言为英语(不用担心英语不好的问题,),emoji 也可以用。 3. 语法规则: 用英文半角符号逗号“,”来分隔 tag,逗号前后有空格或者换行不影响效果。 改变 tag 权重:tag 顺序越靠前对于 SD 来说权重越大,还可以通过“/…”(每加一层括号权重变化)来设置权重。 进行 tag 的步数控制(高级玩法):“”,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2;数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。 此外,像卓 sir 在制作电商模式相关的 PPT 时,通过与 GPT4 自然交流确定主题和企业代表,然后编写 PPT 大纲的 prompt,并经过多次迭代和优化。您可以参考这些经验和方法来构建适合您需求的 prompt。
2025-02-15
吴恩达AI课程
以下是关于吴恩达 AI 课程的相关信息: 吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教您书写 AI 提示词,最后会教您利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本: 【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 8 月 24 日历史更新: 吴恩达最新的《》短课程上线,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据您自己的数据训练和评估 LLM。 《》非常深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。 吴恩达(Andrew Ng)是一位在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域做出了重要贡献,并且是在线教育平台 Coursera 的联合创始人。吴恩达曾在斯坦福大学担任副教授,并领导了谷歌的大脑项目(Google Brain)。此外,他还曾担任百度公司首席科学家,并领导百度研究院。吴恩达以其在深度学习和大规模机器学习系统方面的研究而闻名,他在这些领域的工作推动了人工智能技术的商业应用和普及。他还是多个人工智能和机器学习开源项目的倡导者,包括 TensorFlow 和 Caffe。除了在学术界和工业界的贡献,吴恩达还致力于普及人工智能教育。他教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,吸引了全球数百万学生的参与。通过他的教学和研究工作,吴恩达对人工智能领域的发展产生了深远的影响。内容由 AI 大模型生成,请仔细甄别。
2025-02-15
如何入门学习AI
以下是新手入门学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果您不会代码,想要在 20 分钟上手 Python + AI,可以按照以下步骤: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景知识: Python 就像哆拉 A 梦,拥有一个百宝袋,即标准库,若不够用,还可通过 pip 一类的工具从 GitHub 一类的分享代码的平台订购新道具。OpenAI 通过 ChatGPT 提供开箱即用的服务,也通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-02-15
有没有包装设计的AI工具
以下是一些常见的包装设计、建筑设计审核规划平面图以及制作网站的 AI 工具: 包装设计: 1. Canva(可画):https://www.canva.cn/ 是一个受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助用户快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 具有简单拖放界面,可快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 建筑设计审核规划平面图: 1. HDAidMaster:云端工具,建筑师可在平台上使用主流 AIGC 功能进行方案创作,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,输入房间面积需求和土地约束可自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 制作网站: 1. Wix ADI:https://www.wix.com/ 基于用户提供信息自动生成定制化网站,提供多个设计选项和布局,集成 SEO 工具和分析功能。 2. Bookmark:https://www.bookmark.com/ 通过询问用户问题快速生成网站,提供直观拖放编辑器和多种行业模板及自动化营销工具。 3. Firedrop:https://firedrop.ai/ Sacha 作为 AI 设计助手可根据指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 4. The Grid:https://thegrid.io/ Molly 作为 AI 设计助手可自动调整网站设计和布局,基于内容和用户互动优化,支持多种内容类型。 请注意,以上内容由 AI 大模型生成,请仔细甄别。每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-02-15
有什么适合销售的AI数据分析及方案梳理的工具
以下是一些适合销售的 AI 数据分析及方案梳理的工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成预测性潜在客户评分,还具有自动化功能,可执行日常或耗时任务,让销售团队专注关键方面。 2. Clari:专门从事智能收入运营的软件,以创建高度准确的收入预测能力闻名,能统一各种来源数据并以易理解方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时研究。 使用 AI 完成阿里巴巴营销技巧和产品页面优化,可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量产品图片,展示产品特点。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐,增加销售额。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务,解答疑问,提高满意度。 10. 营销活动分析:AI 分析不同营销活动效果,了解哪些活动更吸引顾客并产生销售。 11. 库存管理:AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助卖家在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 以下是部分 AI 应用示例: 1. 图虫网:AI 摄影作品销售平台,利用图像识别、数据分析技术,为摄影爱好者提供作品销售渠道,市场规模达数亿美元。 2. 网易云音乐音乐人平台:AI 音乐作品发布平台,运用音频处理、数据分析技术,为音乐创作者提供作品发布等服务,市场规模达数亿美元。 3. 好好住 APP:AI 家居用品推荐平台,通过数据分析、自然语言处理技术,根据用户需求推荐家居用品,市场规模达数亿美元。 4. 东方财富网投资分析工具:AI 金融投资分析平台,借助数据分析、机器学习技术,分析金融市场,提供投资建议,市场规模达数十亿美元。
2025-02-15
帮我收集deepseek的使用资料
以下是关于 DeepSeek 的使用资料: 相关文章: 南瓜博士的《当你惊呼 DeepSeek 成精时,请警惕前方的陷阱》,链接:https://mp.weixin.qq.com/s/ppt89GozeYo7hR99pEFrkA 南瓜博士的《让 DeepSeek 成为全家人的脑洞外挂》,链接:https://mp.weixin.qq.com/s/BBh8GTrdhb8Qyqgz8SufwQ 奥的《让 DeepSeek 进行脱口秀创作,幽默程度虽然大幅提升,但仍有进步空间》,链接:https://mp.weixin.qq.com/s/3nZERD5H5wPCGCT1_A46Sw DeepSeek 最新文章观点学术报告及业界评论:https://waytoagi.feishu.cn/wiki/D9McwUWtQiFh9sksz4ccmn4Dneg 社区动态: 华尔街分析师对 DeepSeek 的反应:DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为 DeepSeek 或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek DeepSeek 的实际使用体验:中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 工具使用: 网址:https://www.deepseek.com/zh ,新手推荐,国内能访问,网页登录方便,目前完全免费。使用时点击开始对话,左边选择代码助手。 在生成 2048 游戏上,DeepSeek 和晓颖 AI 助手更为简便准确。
2025-02-05
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
收集资料,整合网站链接
以下是关于利用 AI 收集资料和整合网站链接的相关内容: 利用 AI 收集资料: 明确文章主题后,可借助 AI 高效收集相关资讯。例如使用 Perplexity.AI,访问其网站并使用搜索功能,为获取更专业深入的结果,可启用 Pro 功能(每天有一定次数免费使用,常使用可考虑开通会员)。在搜索框输入具体 Prompt 如“查找关于 OpenAI 对马斯克言论回应的博客文章”,快速定位相关资讯。获取搜索结果后,点击回答内容下方的拷贝按钮获取引用网站链接。同理,微软的 Bing 搜索引擎等具备联网搜索功能的工具也能实现类似功能,帮助快速搜集大量资料,提升文章专业度和说服力。 整合网站链接: 1. 整理资料时,可使用月之暗面开发的 Kimi 这个 AI 会话助手。它具备读取网页内容并生成一定内容的能力,读取完毕会显示绿色标点提示。但它阅读能力有限,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料确保有效读取和理解。 2. 以下是一些收录 GPTs 的网站: Hallidai:,特点是索引了周日为止 𝕏 上公开提及的全部 GPTs 数据,后面会每天持续更新,用提及每个 GPTs 的点赞数最高的 tweet 作为初始的 upvotes 来展示热度,也提供了大家 upvote 自己喜欢的 GPTs 的功能,支持搜索,用 Semantic Search 的方式方便大家快速找到想要的 GPTs。 GPTStore:,特点是内容全,有搜索,有热度。 Aigenthub:,特点是有搜索,可讨论,内容全。 GPTs Hunt:,特点是 9557 GPTs。 GPTsPartner:,特点是每日更新,有搜索。 GPTseek:,特点是用户可投票筛选高质量 GPTs,有分类筛选和提交自己的 GPTs 功能,有热度,内容全。
2025-01-14
是否有针对访谈收集的数据做分析的智能体或应用?
目前存在针对访谈收集的数据做分析的智能体或应用。例如,在个人实操案例中,有人为了做 AI 访谈,搭建了一个 AI 访谈 bot,希望借此了解朋友们做访谈的意愿和产出内容的质量水平,同时还希望这个 bot 具备内容推荐的能力。 智能体在各种应用中扮演重要角色,如自动驾驶中感知周围环境并做出驾驶决策,家居自动化中根据环境和用户行为自动调节智能设备,游戏 AI 中的对手角色和智能行为系统,金融交易中的智能交易算法,客服聊天机器人通过自然语言处理提供自动化客户支持,以及机器人中集成的智能控制系统等。 设计和实现一个智能体通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。首先要明确智能体需要实现的目标或任务,设计传感器系统采集环境数据,定义决策算法,设计执行器或输出设备,对于学习型智能体还需设计学习算法以从经验中改进。
2024-12-15
我想收集一些AIGC行业应用的案例
以下是一些 AIGC 行业应用的案例: 在内容创作方面: 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 在制造业领域: 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。 在医疗行业: 疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了一种名为 Halicin 的新型广谱抗生素。 在广告营销行业: 从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,还能降低内容制作成本并加速创意实现。
2024-11-20
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
怎么用ai辅助写一篇文章
以下是关于如何用 AI 辅助写一篇文章的方法: 1. 对于孩子使用 AI 辅助写作文,应避免提封闭性问题,改为开放性问题或让 AI 帮助提出拓展思考的问题。担心孩子代写偷懒,可要求孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作文,孩子进行点评批改并让 AI 迭代出更好的文章,评价关注点在于孩子能否说清 AI 作文的优缺点及如何修改。 2. 成人使用 AI 辅助写作时,可参考以下高效写作的关键步骤: 把对标选题内化成自己的东西,思考如何注入个人特色,打造专属爆款。 常见做法包括:结合自身人设、定位,融入相关内容;结合自身经历,分享真实体验;补充新信息、新观点,使文章更全面;使用自己的语言风格;调整文章结构。 例如,人设可以是最懂 AI 工作流的 00 后,写作时收敛到 AI 工作流话题,还可加入 00 后大学生用相关工具的情况;对于选题可以加入自己使用的真实体验;补充原文未提到的新进展、新观点或实用技巧;按照自己的语言风格写作;调整文章结构,如将“5 种方法”改为“3 步上手+2 个进阶技巧”等。目的是让读者感觉文章具有个人特色。
2025-02-13
给我一些可以辅助我写公众号文案的智能体
以下是一些可以辅助您写公众号文案的智能体: 1. AI 公文智能体“学习强国公文助手”:在文小言 APP 正式上线,能够帮助进行文汇检索、AI 公文书写、AI 公文润色等。具有权威的“学习强国”数据库背书,文汇检索能力能快速溯源文字材料并重点标注,内容覆盖广泛,还能在保留文章结构和准确性的前提下提升公文质量。使用方式为下载文小言 APP 找寻学习强国公文助手。 2. 生物医药小助手:由 1 个工作流和 6 个数据库实现。工作流设计简单,数据库包括公众号文章、执业药师教材等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自知识库。可应用于医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等商业化场景。 3. 小众打卡地智能体:名称为“小众打卡地”,链接为 https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 。能推荐小众打卡地,输入旅游目的地城市可获得 3 个小众打卡地的小红书类文案及精美配图。其搭建思路包括录入小红书相关文案参考知识库、通过文本模型组成搜索词进行搜索和提取相关信息等。从手机支付宝小程序使用更方便,可一键复制获取。
2025-02-13
如何创建一个应用于教学的各个环节,如备课体系、作业批改、出题建议、辅助出题等的智能体?
要创建一个应用于教学各个环节的智能体,您可以参考以下步骤和考虑以下方面: 1. 提前收集教育领域的需求,例如让云谷老师协助收集需求和案例,社群小伙伴帮助实现。这些需求可以包括办公提效的具体场景、家校沟通、个性化教育、心理疏导、备课体系、作业批改、出题建议、辅助出题、建立孩子的成长体系记录、孩子成长的游戏(如寻宝游戏)、朗读(模拟老师泛读,学生背诵,AI 评判)、文生图和文生视频在备课时的针对性、学科本身的教育辅助、分析学生行为并给出策略(基于教育心理学)、教师模拟培训、公开课备课辅助、指导新老师处理学生矛盾和家长问题以提高沟通能力等。 2. 明确最终交付物的形态和背后的思考,使需求描述更清晰。 3. 注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包。新注册用户可获得 2000 万 Tokens,也可通过充值/购买多种模型的低价福利资源包,或者共学营报名赠送资源包。 4. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目可能会使用到 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 等模型。 5. 进入智能体中心 我的智能体,开始创建智能体。为了照顾初学者,可以手把手进行编辑,完成一个简单智能体的搭建。 此外,在创建过程中,还可以考虑以下相关的产品和服务: 1. 具身智能的企业产品。 2. 3D 眼镜、AI 绘本、AI 图书等。 3. 学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体等。 4. Zeabur 等云平台、0 编码平台。 5. 大模型如通义、智谱、kimi、deepseek 等。 6. 编程辅助、文生图工具(如可灵、即梦等)。 需要注意的是,创建这样的智能体需要综合考虑多方面的因素,并不断优化和改进,以满足教学的实际需求。
2025-02-10
如何训练一个辅助教学和备课的智能体
要训练一个辅助教学和备课的智能体,可以参考以下步骤和方法: 1. 利用大语言模型:例如 ChatGPT 等,探讨如何借助其辅助备课、解答学生疑问和生成教学材料。分享与大语言模型进行有效沟通的技巧,提升提问和指令的质量。 2. 注重教学应用:在训练过程中,考虑如何将智能体应用于教学的各个环节,如备课体系、作业批改、出题建议、辅助出题等。 3. 收集教育需求:提前收集教育领域的需求,包括办公提效、家校沟通、个性化教育、心理疏导等方面,让智能体能够针对性地提供服务。 4. 分析学生行为:基于教育心理学等,训练智能体能够分析学生行为,并给出相应的策略。 5. 模拟培训:如教师模拟培训、公开课备课辅助等。 6. 结合跨学科项目:像生物和信息科技老师合作带着学生训练 AI 模型。 7. 考虑多种教育场景:例如朗读、背诵评判,文生图、文生视频在备课时的针对性应用等。 同时,在与智能体交流时,要注意以下心得: 1. 把智能体当人看,用计算机神经网络模拟人脑工作,它表现得更像人,而不是准确的机器,也会不懂装懂,时对时错。 2. 智能体不需要休息,效率很高,但没有自驱力,被动回答。 此外,一些学校已经在行动,如北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课等。
2025-02-10
如何利用 AI辅助数据分析
利用 AI 辅助数据分析可以通过以下方式实现: 1. SQL 分析: 用户描述想分析的内容,后台连接数据库。 附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 不能通过。 校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析: 用户上传文件,如有需要可以简单描述数据、字段意义或作用辅助分析。 前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致。 此外,利用 AI 技术来辅助写作课题可以参考以下步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:借助 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-02-08
论文辅助AI
以下是关于论文辅助 AI 的相关信息: 在论文写作领域,AI 技术提供了多方面的辅助,包括文献管理和搜索、内容生成和辅助写作、研究和数据分析、论文结构和格式、研究伦理和抄袭检测等。 常用的论文写作 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,优化论文内容。 3. 研究和数据分析: Google Colab:支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,AI 文章排版工具主要用于自动化和优化文档布局和格式,常见的有: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作排版。 常见的文章润色 AI 工具包括: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,用于筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助写作前头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,生成符合要求的学术论文。 使用这些工具时,应结合自己的写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-07
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
物流公司信息系统管理员给同事讲解大模型入门级使用,帮忙推荐一些经验
以下是为物流公司信息系统管理员推荐的大模型入门经验: 一、什么是大模型 通俗来讲,大模型是通过输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与大模型可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 二、数字化与 Embedding 数字化便于计算机处理,但为了让计算机理解 Token 之间的联系,还需要把 Token 表示成稠密矩阵向量,这个过程称之为 embedding。常见的算法有: 1. 基于统计: Word2Vec,通过上下文统计信息学习词向量。 GloVe,基于词共现统计信息学习词向量。 2. 基于深度网络: CNN,使用卷积网络获得图像或文本向量。 RNN/LSTM,利用序列模型获得文本向量。 3. 基于神经网络: BERT,基于 Transformer 和掩码语言建模(Masked LM)进行词向量预训练。 Doc2Vec,使用神经网络获得文本序列的向量。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”,指的是用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。 参考:
2025-02-11
怎么把批量提取的信息自动写入表格
目前知识库中没有关于如何将批量提取的信息自动写入表格的相关内容。但一般来说,您可以使用编程语言如 Python 来实现这一功能。例如,使用 Python 的`pandas`库,它提供了丰富的方法来处理数据并写入表格。您需要先读取提取的信息,然后将其整理为合适的数据结构,再使用`pandas`的`to_excel`或`to_csv`等方法将数据写入表格。另外,一些办公软件如 Excel 本身也可能具有批量导入数据的功能,您可以查看相关的帮助文档来了解具体操作方法。
2025-02-11
如何尽可能多的了解AI的信息
以下是尽可能多了解 AI 信息的一些方法: 1. 万能公式法:问 AI“一个(xxx 职业)需要具备哪些知识?”,AI 会给出知识框架,然后针对每一个小点继续询问,能帮助您深度思考。 2. 优质信息源:像没有技术背景的普通人,可以在「即刻」App 的“”等免费圈子获取前沿信息线索,很多 Twitter 上的开发者大牛也会在这里分享,必要时可去 Twitter 和相关官网溯源。 3. 信息爆炸做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 4. 持续学习和跟进:AI 发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 5. 一位投资人的信息源: 简报:TLDR AI。 播客:No Priors podcast hosted by Sarah Guo 和 Elad Gil、Robot Brains Podcast hosted by Pieter Abbeel、Lex Fridman Podcast hosted by Lex Fridman、The Gradient podcast hosted by Daniel Bashir、Generally Intelligent hosted by Kanjun Qiu、Last Week in AI 。 会议:World AI Cannes Festival 。
2025-02-09
我想把自己电脑里的文档搭建一个AI知识库方便的随时查找相关信息,请问具体要怎么操作?
以下是在电脑里将文档搭建为 AI 知识库以便随时查找相关信息的具体操作步骤: 1. 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传您的文档。 2. 等待解析:根据您上传的文档大小,百炼需要一定时间解析,通常占用 1 6 分钟,请您耐心等待。 3. 建立索引:进入,根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。知识库将为上一步骤中准备的文档建立索引,以便后续大模型回答时检索参考。选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 4. 引用知识:完成知识库的创建后,可以返回进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt 中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。 此外,知识库中的文档需要被转换成向量形式,这依靠 Embedding Modle 完成。在检索阶段,检索器会根据问题向量在庞大的向量空间中搜索与问题相关的内容,通过相似性计算、排序与选择、信息抽取等操作找出最相关的信息片段。然后在信息整合阶段,将检索到的信息连同用户问题和系统预设整合成全新的上下文环境,为生成回答提供基础。 您还可以参考以下文章获取更多相关知识:
2025-02-09
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07