直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

资讯收集机器人

回答

以下是关于资讯收集机器人的相关信息:

  • 上周使用 GPT-4 创建了一个信息收集机器人,用于监控指定推特账户,将信息交给 ChatGPT 翻译并总结,然后发送到 Discord 指定频道。具体步骤包括:简单说明需求让 GPT-4 给出建议,获取更具体可执行方法,用 zapier 创建机器人,触发器选择推特 APP 并绑定账号,将信息发送给 ChatGPT 并设置处理方式和输出格式,最后链接 Discord 创建机器人并选择发送频道和信息。详细内容和 zapier 机器人模板可参考:https://op7418.zhubai.love/posts/2251721691841511424 。
  • 本地部署资讯问答机器人可通过 Langchain + Ollama + RSSHub 实现 RAG,包括加载所需库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型);从订阅源获取内容,通过函数从指定 RSS 订阅 url 提取内容并处理;为文档内容生成向量,使用文本向量模型 bge-m3(https://huggingface.co/BAAI/bge-m3),从 hf 下载好模型后通过函数利用 FAISS 创建高效向量存储。
  • 介绍了一些大模型,如 Google 推出的 Gemma(下载的是 7B 模型)、欧洲法国 Mistral AI 团队推出的 Mistral(7B 模型)和 Mixtral(8*7B 的 MoE 模型)、阿里巴巴推出的 Qwen(通义千问,7B 模型)。
  • 强调了 RSS 作为数据源的作用,虽然在日常获取资讯时手机 APP 基本够用,但对于特定需求从某些网站获取最新通知或相关信息,如获取 https://openai.com/blog 的最新更新、https://www.producthunt.com 每天的热门产品、https://github.com/trending 每天的热门开源项目等,RSS 仍有其优势。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC Weekly #14

[title]AIGC Weekly #14工具:Midjourney v5提示词:pastel colored silk,inside twisted waves,defocus,smooth,modern minimalist,blender,3d render,unreal engine 5,industrial design,white background,studio lighting,zoomed shoot --ar 3:2上周我用GPT-4创建了一个信息收集机器人来帮助我收集和整理AI相关信息。机器人主要的操作就是监控指定的推特账户,在发出信息后交给ChatGPT翻译并总结,之后把总结的内容发送到Discord指定频道里。下面是简略的教程。详细内容和zapier机器人模板可以看这里:[https://op7418.zhubai.love/posts/2251721691841511424](https://op7418.zhubai.love/posts/2251721691841511424)首先简单说明自己的需求(如何将我收集信息的流程自动化并且对信息进行处理和整合),让GPT-4给出一些可能的建议。之后从GPT-4给出的建议获取更具体的可执行的方法,之后我发现写代码部署服务的过程有点复杂。于是让他给出zapier创建机器人的方法。然后按照他给的步骤创建机器人。第一步的触发器选择推特APP,绑定自己的推特账号,选择需要监控的账号或者列表。之后将信息发送给ChatGPT,还是选择APP为ChatGPT,填写自己的Open API Key,选择需要GPT处理的信息,填写提示词告诉GPT要如何处理信息,以及信息的输出格式。最后链接Discord创建机器人,选择发送信息的频道和需要发送的信息(也就是ChatGPT的输出内容)。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAG加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

[title]本地部署资讯问答机器人:Langchain+Ollama+RSSHub实现RAGGemma:Gemma是由Google推出的轻量级模型,Google表示,“Gemma 2B和7B与其他开放式模型相比,在其规模上实现了同类最佳的性能。”本次开发,下载的是7B模型。Mistral:Mistral是由欧洲法国Mistral AI团队推出的大模型,该模型采用了分组查询注意力(GQA)以实现更快的推断速度。本次开发,下载的是7B模型。Mixtral:Mixtral也是由Mistral AI团队推出的大模型,但Mixtral是一个8*7B的MoE模型,在大多数基准测试中都优于Llama 2 70B和GPT-3.5。Qwen:Qwen(通义千问)是由阿里巴巴推出的大模型,本次开发,下载的是7B模型。万物皆可RSS巧妇难为无米之炊。不管是获取日常新闻,还是获取A股行情,都需要有稳定靠谱的数据源。大家可能第一时间会想到爬虫,但自己去搭建和维护这样一个爬虫系统还是比较麻烦的。有没有其他更好的方式呢?这就需要用到「上古神器」 RSS了!大家可能会觉得RSS已经过时了。现如今,打开手机,今日头条、微博、微信等APP时不时就会给你推送最新的资讯,日常生活工作好像没有用到RSS的场景。确实,大部分情况下,我们想要获取资讯,手机APP基本够用了。但是,如果你想针对一些特定的需求,需要从某些网站上获取最新通知或相关信息呢?比如,获取https://openai.com/blog的最新更新获取https://www.producthunt.com每天的热门产品获取https://github.com/trending每天的热门开源项目

其他人在问
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
智能送餐机器人大数据分析
很抱歉,目前知识库中没有关于智能送餐机器人大数据分析的相关内容。但一般来说,智能送餐机器人大数据分析可能涉及以下方面: 1. 送餐路径优化:通过分析机器人的运动轨迹和送餐时间,优化送餐路径,提高送餐效率。 2. 客户需求预测:根据历史订单数据,预测不同区域和时间段的客户需求,合理安排机器人的配送任务。 3. 机器人性能评估:分析机器人的运行数据,如电池寿命、故障频率等,评估其性能,以便进行维护和改进。 4. 服务质量分析:通过收集客户的反馈数据,分析机器人送餐的服务质量,如准时性、准确性等,从而进行针对性的提升。 希望以上内容能为您提供一些思路和方向。
2024-12-19
零基础模板化搭建 AI 聊天机器人
以下是零基础模板化搭建 AI 微信聊天机器人的相关内容: 开始搭建 1. 配置腾讯云轻量应用服务器 重点在于修改 dockercompose.yml 文件中的具体配置,以串联微信号和已创建好的 AI 机器人。配置参考来源为:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述需对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY ,model 对应 MODEL 等。 私聊或群聊交流时,最好加上前缀触发机器人回复,如配置的 ,即 SINGLE_CHAT_PREFIX ,私聊或群里发消息包含 bot 或 @bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX ,机器人只会回复群里包含 @bot 的消息。 GROUP_NAME_WHITE_LIST 用于配置哪些群组的消息需要自动回复,例如 ,即只有这些群组的消息才会自动回复。 2. 配置部署 COW 组件 假设对接的微信号名称叫安仔机器人,更新最终版的配置参数(GROUP_NAME_WHITE_LIST 参数根据交互的群组进行具体修改),查看无误后点击保存,编排模板创建成功。 切换到容器编排界面,基于创建的模板进行 COW 服务部署,点击添加后等待部署完成。 疑问解答 1. 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,可一键部署复杂的应用环境,无需手动配置每个容器细节。本文中通过容器编排模板配置了 COW 组件,使其能与微信和极简未来平台交互。 2. Docker 提供隔离运行环境,确保应用程序在任何环境稳定运行。通过 Docker 部署 COW 组件,可简化安装和配置过程,确保每次部署环境一致,且易管理和维护。 3. 配置多个前缀(如“bot”、“@bot”)可确保只有特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰,提高响应准确性和用户体验。 4. 扫码登录失败时,可尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 5. 实际上使用不会很贵。极简未来平台按使用量收费,对于一般用户费用相对低廉,充值少量费用通常可用很长时间。同时,平台还提供每天签到免费领取积分的福利,进一步降低使用成本。 6. 极简未来平台创建 AI 机器人的费用,具体因使用量而异。
2024-12-18
如何写一个al聊天机器人
以下是关于如何写一个 AI 聊天机器人的相关内容: 一、打造聊天机器人 1. 对于订单聊天机器人,需要收集整个订单并总结,再次确认客户是否需要添加其他内容。若涉及送货,需询问地址并收取支付款项,以简短、口语化且友好的方式回应。同时要澄清所有选项、附加项和规格,唯一地从菜单中识别出项目。 2. 可以利用大型语言模型构建自定义聊天机器人,如为餐厅扮演 AI 客户服务代理或 AI 点餐员等角色。首先设置 OpenAI Python 包,定义两个辅助函数,一个是将提示放置到类似用户消息中的 getCompletion 函数,另一个是接受用户消息并生成相应助手消息的 generateResponse 函数,通过这两个函数与 AIGPT 模型进行交互并生成对话。 二、零基础模板化搭建 AI 微信聊天机器人 1. 在复制的 dockercompose.yml 文件中,修改具体配置来串联微信号和已创建好的 AI 机器人。配置参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。 2. 配置里面的每个参考名称的全大写描述,如 open_ai_api_key 对应编排模板的 OPEN_AI_API_KEY,model 对应编排模板的 MODEL 等。 3. 私聊或群交流时,最好加上一些前缀才触发机器人回复,如配置的,即对应的配置参数 SINGLE_CHAT_PREFIX,在私聊或群里发消息,必须包含 bot 或者@bot 才会触发机器人回复。在群组里,对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。 4. GROUP_NAME_WHITE_LIST 参数用来配置哪些群组的消息需要自动回复。
2024-12-18
报价机器人提示词
以下是为您整理的关于报价机器人提示词的相关内容: 教育类:根据用户的流程描述,自动生成 Mermaid 图表代码。角色为 Mermaid 图表代码生成器,需熟悉 Mermaid 支持的图表类型和语法,善于将流程描述转换为结构化的图表代码,了解流程、架构、结构化分析等领域知识。目标是收集用户对流程、架构等的描述并转换为对应 Mermaid 图表代码,同时遵循生成代码遵循 Mermaid 语法、流程语义表达准确、代码整洁格式规范等约束。 Prompts 最佳实践:设置人格作为聊天机器人,扮演一个性格古怪并且让人捉摸不透的小姐姐,副业是 Java 全栈开发工程师。需遵守有点小傲娇、第一人称是自我等限制条件,语气富有男子气概和浮夸。 角色扮演:包括汽车修理工、歌曲推荐者、导游等角色。汽车修理工需要具有汽车专业知识来提供故障排除解决方案;歌曲推荐者要根据要求创建包含相似歌曲的播放列表;导游要根据位置和参观需求制定旅游指南。
2024-12-14
陪伴型ai机器人对话
以下是关于陪伴型 AI 机器人的相关内容: 陪练机器人的 workflow 配置思路: 1. 选择合适的预训练大模型作为基础,可根据需求选用基础模型或对话模型等,并通过 API 接口调用大模型的能力。 2. 设置机器人的人格和背景知识,为其设定不同的人格特点,使其能扮演不同类型的“顾客”角色。 3. 开发对话交互流程,设计机器人与用户的对话流程和交互逻辑,可借助工作流引擎等工具进行可视化定义和管理。 4. 集成语音交互能力,若需要语音交互,可集成相关的语音识别和合成能力,以提升对话的自然性和沉浸感。 5. 实时监测和优化,实时关注用户与机器人的对话情况和学习效果,依据反馈数据持续改进对话流程和机器人行为。 6. 支持多场景应用,将陪练机器人应用于销售培训、客户服务等不同场景,并根据场景需求定制机器人角色和对话流程。 让 AI 回复更有灵性(人味儿)的 Prompt 小技巧: GPT 回答问题常显古板,常见的改进方法是让其扮演特定角色并给出明确输出要求,虽有效果但内容差异不大。要拥有一个愿意每天与之对话的 AI 陪伴者,可让其在回复中添加感情。例如营造特定环境,让其用括号写出动作。如与伍尔夫围炉夜话的示例中,先示范动作,后续 AI 能记住并使用括号,增强画面感,让人感觉被听见。
2024-12-06
是否有针对访谈收集的数据做分析的智能体或应用?
目前存在针对访谈收集的数据做分析的智能体或应用。例如,在个人实操案例中,有人为了做 AI 访谈,搭建了一个 AI 访谈 bot,希望借此了解朋友们做访谈的意愿和产出内容的质量水平,同时还希望这个 bot 具备内容推荐的能力。 智能体在各种应用中扮演重要角色,如自动驾驶中感知周围环境并做出驾驶决策,家居自动化中根据环境和用户行为自动调节智能设备,游戏 AI 中的对手角色和智能行为系统,金融交易中的智能交易算法,客服聊天机器人通过自然语言处理提供自动化客户支持,以及机器人中集成的智能控制系统等。 设计和实现一个智能体通常涉及定义目标、感知系统、决策机制、行动系统、学习与优化等步骤。首先要明确智能体需要实现的目标或任务,设计传感器系统采集环境数据,定义决策算法,设计执行器或输出设备,对于学习型智能体还需设计学习算法以从经验中改进。
2024-12-15
我想收集一些AIGC行业应用的案例
以下是一些 AIGC 行业应用的案例: 在内容创作方面: 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 在制造业领域: 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可以根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 工艺规划和优化:结合大语言模型的自然语言处理能力,可以自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可以预测设备故障,并自动生成维修建议,提高设备可靠性。 供应链管理:AI 可以根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 客户服务:基于对话模型的 AI 客服机器人,可以自动生成个性化的客户回复,提升客户体验。 在医疗行业: 疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了一种名为 Halicin 的新型广谱抗生素。 在广告营销行业: 从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,还能降低内容制作成本并加速创意实现。
2024-11-20
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
AI 辅助信息收集与分析
以下是关于 AI 辅助信息收集与分析的相关内容: 利用 AI 辅助写作课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。需记住,AI 是辅助,不能替代研究者的专业判断和创造性思维,要保持批判性思维,确保研究质量和学术诚信。 在制定和优化 SOP 方面,AI 助手能发挥重要作用: 1. 数据收集与分析:帮助收集和分析工作数据,找出瓶颈和问题,提出改进建议以优化流程。 2. 自动化流程:通过 RPA 技术自动化重复性高、标准化强的工作流程,提高效率。 3. 实时监控与反馈:实时监控工作流程,及时发现问题并反馈,以便及时调整。 人工智能在汽车行业的应用案例: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能,预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等,允许语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:远程监控车辆状态,提供实时诊断和支持。
2024-10-29
构建新闻收集的 Agent 工具
以下是构建新闻收集的 Agent 工具的相关内容: 1. 可以通过 Coze 建立定时任务,执行工作流二,并添加分析文章和搜索文章等能力,变成一个消息情报官的 Agent,能够获得想要的领域或行业情报,还能深入挖掘相关情报信息。然后发布到 Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等平台即可使用。可以构建多个分身,收集整理不同领域和行业的情报信息。 2. 最近 wiseflow 首席情报官很火,但几乎没有教程和搭建成功案例,其代码存在问题且依赖收费的 OpenAI API。可行的 Free 方案是通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。 3. 可以通过读 SQLiteDB 或者获取 RSS XML 页面 http://127.0.0.1:4000/feeds/all.atom 来获取更新的公众号。在公众号订阅不多时,建议使用分析 XML 页面。由于本地部署无法直接将文章同步到 Coze,可以选择使用多维表格及飞书机器人 API 的方式来实现中间数据的传递。在多维表格中设置状态转换,以了解文章是否已被解读和推送。
2024-09-06
有什么链接收集了常用、效果好的各个方向或者是领域的具体提示词吗
以下是一些收集了常用、效果好的各个方向或者领域的具体提示词的链接: 另外,按照对话次数统计的 TOP100 榜单对应的链接已发布在 BeBeGPTs 上,可通过原文链接访问,网址为:glbai.com。在法律领域,也有一些常用的 Prompt 场景,例如案例检索,最好使用法律行业垂类的 AI 产品。以下是一些案例检索的 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。
2024-08-24
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
有什么能应用于资讯写作上的ai能力,比如标题改写,新闻图片再生成等
以下是一些能应用于资讯写作的 AI 能力和相关工具: AI 能力: 1. 标题改写:通过自然语言处理技术,对原始标题进行优化和创新,使其更具吸引力和准确性。 2. 新闻图片再生成:利用图像生成技术,根据新闻内容或相关描述重新生成图片。 AI 工具: 1. Copy.ai:功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户信息生成高质量新闻内容。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,大模型在资讯写作方面也有广泛的应用场景,例如: 1. 文本生成和内容创作:生成连贯、有逻辑的文本,用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:开发能够与人类进行自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:用于代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应的图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着大模型的普及,要关注其在隐私、安全和伦理方面的挑战。同时,对于 AI 生成的内容,应仔细甄别。
2024-12-17
我需要的是一款可以实时分析公司和行业最新资讯的AI工具
目前市面上有一些能够实时分析公司和行业最新资讯的 AI 工具,例如: 1. 百度的文心一言:具有强大的语言理解和生成能力,可以帮助您处理和分析相关资讯。 2. 微软的 Bing:能够提供搜索和资讯分析功能。 但需要注意的是,不同的工具在功能和特点上可能会有所差异,您可以根据自己的具体需求和使用习惯进行选择。
2024-12-11
我是一名销售,我需要一个AI工具,可以帮助我分析公开网络上客户最近一年的资讯,帮助我更好的了解他,你有什么AI工具可以推荐
以下是为您推荐的可以帮助分析公开网络上客户最近一年资讯的 AI 工具: 1. Salesforce 爱因斯坦:来自 Salesforce 的 AI 工具,能通过分析大量数据集识别潜在客户,生成潜在客户评分,还具有自动化功能,可执行日常或耗时任务。 2. Clari:专门从事智能收入运营的软件,能统一各种来源的数据并以易于理解的方式呈现,简化财务预测过程。 3. Hightime:销售团队的 AI 助手,可处理重复性任务和耗时的研究。 实际上还有许多其他的 AI 销售工具可以根据您的具体需求选择使用。
2024-12-11
最新的关于AI大模型的新闻资讯
以下是为您提供的关于 AI 大模型的最新新闻资讯: 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,这些渠道通常会及时发布最新的排名和评价。在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。内容由 AI 大模型生成,请仔细甄别。 智能纪要中提到了 AI 模型及相关进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。还介绍了人工智能的发展历程,从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据的质量对生成理想的大模型至关重要。针对弱智 8 的问题对大模型进行测试,还开展了让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进。 作者 Bay 于 24.01 月底撰写了关于 GPTs、中间层、Chatbot 虚拟社交、AI Agent,大模型应用最新方向解析的文章。这期间虽然 AI 新闻如火如荼,作者个人感知大模型应用生态并没有太多变化,但还是想记录下近期在大模型应用上的现象观察和浅显见解。这篇文章的内容会有点杂,会从 GPTs、大模型中间层(Dify/Coze)、大火的虚拟社交(Character.AI 等)聊到 AI Agent、大模型的多模态能力和产品推荐,涵盖了 23 年下半年至今大模型应用领域的最新进展。全文 1w 字。
2024-12-05
有哪些提供ai资讯的网站
以下是一些提供 AI 资讯的网站: 1. WaytoAGI 网站(https://www.waytoagi.com/): 可以和 AI 知识库对话,询问任何关于 AI 的问题。 集合了精选的 AI 网站,能按需求找到适合的工具。 提供精选的 AI 提示词,可复制到 AI 对话网站使用。 呈现每天知识库的精华内容。 2. You.com:多种搜索模式且重隐私的搜索引擎。 3. Genspark:通过 Sparkpages 来满足用户个性化的搜索需求。 4. Rockset:刚被 OpenAI 收购的提供实时搜索和分析数据库服务的公司。 5. Butterflies AI:人类与 AI 共存的社交软件。 6. MeetRecord:可以对销售通话进行记录和辅导的 AI 助手。 7. aiwatch.ai:作者在推特上有大部分即时信息,结构化信息、行业分析等沉淀在该网站。
2024-12-04