直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI可以解决可控性核聚变吗

回答

AI 可以在一定程度上协助解决可控性核聚变问题。

从全人类能源供给的角度来看,可控核聚变是唯一有希望大幅提升全人类能源供给数量级的技术。目前,在可控核聚变技术的研究中,AI 已经发挥了作用。例如,普林斯顿大学等离子体物理实验室通过 AI 成功在离子体撕裂前 300ms 进行了预测,这是可控核聚变进展的一小步。

同时,由于 AI 发展对能源的强大需求,科技公司纷纷投资致力于核聚变技术商业化的公司,如 Sam Altman 投资了 Helion Energy,谷歌投资了 TAE Technologies,OpenAI 投资了 Commonwealth Fusion Systems。这很有可能加速攻克可控核聚变技术的难题。

此外,AI 已经在工业中对诸如控制核聚变过程等大规模安全关键实践带来了变革。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AGI 万字长文(下)| 2024,分叉与洪流

最后,如果真的从“AGI已经出现”的阴谋论出发。那么不管AGI是否在隐藏自己的行踪,它所需要的基本资源一定是无法回避的;它也一定会在这几个领域里全力“协助”人类。于是,相信AGI觉醒的对话,自然会期待在这几个领域里出现划时代的突破——有些似乎已经有进展了。能源:可控核聚变。最近,有着“永远还差50年”称号的可控核聚变技术在AI的协助下开始有了松动:2月21日的新闻,普林斯顿大学等离子体物理实验室(Princeton Plasma Physics Laboratory)通过AI成功在离子体撕裂前300ms进行了预测。当然,这只是可控核聚变进展的一小步。(https://engineering.princeton.edu/news/2024/02/21/engineers-use-ai-wrangle-fusion-power-grid)从全人类能源供给的角度:->化石燃料、水能、风能、地热:只能维持现阶段全人类能源获取能力->太阳能过于分散、核裂变燃料稀少:即使最大规模使用,顶多再提升一个能源数量级-唯一有希望提升全人类能源供给数量级的就是可控核聚变在能源即将开始成为AI瓶颈的今天,AGI如果有了意识,那一定会全力“协助”人类突破核聚变技术。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

这里特别提到了能源,Coatue预估按照现在的电力基础设施,到2030年全美国的电力供应将没法支撑2500万块数据中心GPUs的消耗,现在才300万块GPUs;电力的产量提升并不如算力提升那么容易,Mark Zuckerberg在最近一次与Dwarkesh的播客对谈中,特别吐槽了这一点,电力供应将成为AI发展的最大瓶颈!科技公司这次肯定等不及传统能源企业的升级了,Sam Altman几乎每次都会表达AI的瓶颈是能源供应,因此他投资了Helion Energy,一个提供小型化核聚变装置的公司,他们已经和微软签订了合约,计划在2028年上线其首个核聚变发电厂,并在一年内达到50兆瓦的发电能力;谷歌投资了TAE Technologies,就连OpenAI自己也投资了Commonwealth Fusion Systems,这两家公司都专注于核聚变技术的商业化。个人感觉,可控核聚变技术的难题很有可能因为AI对能源的强大需求而加速攻克,因为市场看到了超级廉价的能源,还能诱导出那么多以前没有过的需求;创造新的市场是企业家与科技创新的最大动力,这是政府引导的科研创新所不具备的。

【法律法规】《促进创新的人工智能监管方法》.pdf

aspects of our everyday activities,from systems that monitor traffic to make our commutessmoother,17to those that detect fraud in our bankaccounts.18AI has revolutionised large-scalesafety-critical practices in industry,like controlling the process of nuclearfusion.19And it hasalso been used to accelerate scientific advancements,such as the discovery of newmedicine20or the technologies we need to tackle climatechange.21

其他人在问
AI读研报
AI Review(测试版)是一项允许您查看代码库中近期更改以捕获潜在错误的功能。您可以单击各个审阅项在编辑器中查看完整上下文,并与 AI 聊天获取更多信息。 为使 AI Review 发挥有利作用,您可为 AI 提供自定义说明以使其专注于特定方面。例如,若希望 AI 专注于性能相关问题,可输入相关指令,这样 AI Review 在扫描更改时会专注于代码性能。 目前,您有以下几个审核选项可供选择: 1. 查看工作状态:将查看您未提交的更改。 2. 查看与主分支的差异:将查看当前工作状态与主分支之间的差异。 3. 查看上次提交:将审查您所做的最后一次提交。
2024-11-22
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
AI写真
以下是关于 AI 写真的相关内容: 在大淘宝设计部 2023 年度 AI 设计实践报告中: 在定制化真人模特实景素材的主题活动方面,通过 AI 能将策划、搭建、拍摄、设计融合为一个闭环流程,短时间内完成页面所有素材的生产和输出。例如七夕主题活动页面,在 12 个时辰主题下,可不受外部拍摄条件限制,产出符合需求且风格一致的素材。 在产品营销视觉的 UI 设计场景中,采用 AI 能力可快速定制多种用户需要的视觉效果,通过 SD 中 controlnet 的有效控制,能生成指定范围内的 ICON、界面皮肤等内容,增加产品功能的定制可能性。例如 88VIP 的 AI 定制皮肤。 在定制模特 AI 生成方面,通过对 AI 大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多维度进行效果升级,提升合成的真实性和美感。结合用户脸型、身材数据,为用户提供定制化的线上真人化模特体验。例如 AI 试衣间、AI 写真,简化数据采集流程构建用户的数字分身,根据不同主题的摄影风格生成 AI 写真,让普通用户能通过 AIGC 创造好玩有趣的内容。 在产品场景生成方面,一张商品图结合用户的自定义输入,便可生成多张场景效果,整个过程无需 3D 模型、显卡渲染和线下拍摄。例如“家作”家装场景灵感。
2024-11-22
我想要把思维导图画的更漂亮一些有什么ai可以帮忙
以下是一些可以帮助您把思维导图画得更漂亮的 AI 工具: 1. Lucidchart: 简介:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂图表,AI 功能可优化设计。 功能:集成 Office 365,方便与其他 Office 应用协同;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费开源的在线图表绘制工具,适用于多种示意图绘制。 功能:支持本地和云存储;多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 简化图表创建过程。 功能:智能绘图,自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图,适合多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;多种协作功能。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和多种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。
2024-11-22
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
有哪些著名的AI咨询公司?提供方案解决的那种
以下是一些著名的提供方案解决的 AI 咨询公司及相关信息: 在 AI 心理咨询产品方面,有 Woebot、Replika、Talkspace、Wysa、Moodfit、Youper 等。Woebot 是基于聊天机器人的心理健康平台,使用认知行为疗法原理引导用户。Replika 是 AI 驱动的个人朋友,提供情感支持和指导。Talkspace 是在线心理咨询平台,使用 AI 技术匹配咨询师。Wysa 提供情绪管理和心理健康支持。Moodfit 分析用户情绪模式并提供建议。Youper 结合 AI 和虚拟现实改善心理健康。但对于严重心理问题仍需专业帮助,且应作为传统咨询的补充。 在其他 AI 应用方面,如 14 号的小红书穿搭推荐,是 AI 时尚穿搭建议平台,利用图像识别和数据分析,根据用户身材和风格提供穿搭建议。15 号的蚂蚁财富智能理财助手,通过数据分析和机器学习为用户提供专业投资建议。16 号的法信智能法律咨询,运用自然语言处理和知识图谱解答法律问题。17 号的慧植农当家等是 AI 农业病虫害识别系统,借助图像识别和机器学习帮助农民识别病虫害。18 号的小米智能家居系统,基于物联网技术和机器学习实现家居设备智能化控制。19 号的文案狗等是 AI 广告文案生成工具,通过自然语言处理快速生成吸引人的广告文案。 在生成式 AI 平台的基础设施供应商方面,英伟达是目前该领域最大的幕后赢家,其数据中心 GPU 收入可观,建立了坚固的护城河。同时也有其他供应商,如甲骨文等挑战者,以及一些提供针对大模型开发人员解决方案的初创公司,如 Coreweave 和 Lambda Labs 等。此外还有谷歌张量处理单元(TPU)、AMD Instinct GPU、AWS Inferentia 和 Trainium 芯片,以及来自 Cerebras、Sambanova 和 Graphcore 等初创公司的 AI 加速器,英特尔也带着高端芯片进入市场,但新芯片占据的市场份额有限。
2024-11-13
AI能回答目前解决不了的问题吗
人工智能不能解决目前所有的问题。例如在科学领域,我们还没有解决所有想要解决的问题,很多时候我们似乎没有选择研究内容的权利,比如大自然会迫使我们去研究某些方面。这就不可避免地让我们面对计算不可约性。 有许多问题都遵循类似的模式,如在游戏图中找到获胜的游戏序列、通过可能性图的移动寻找谜题的解决方案、在给定公理的情况下找到定理的证明、在给定基本反应的情况下寻找化学合成途径,以及解决大量的 NP 问题,这些问题中存在许多“非确定性”的计算路径。 在实际情况中,相关的图通常非常大,所以挑战在于不追踪整个可能性图的情况下找出要采取的步骤。常见的方法包括尝试为不同的可能状态或结果分配分数,并只追求分数最高的路径。在自动定理证明中,也常见从初始命题“向下”和从最终定理“向上”工作,试图找到路径在中间的交汇点。还有一个重要的想法是,如果确定了从 X 到 Y 存在路径,就可以将 X → Y 作为新规则添加到规则集合中。 另外,查看自动编码器内部可以提取出它提出的简化表示。当数据在神经网络中流动时,会努力保留重现原始输入所需的信息。如果某一层的元素较少,那么该层的元素就对应于原始输入的某种简化表示。以经过大量网络图像训练的标准现代图像自动编码器为例,给它输入一张猫的图片,它能成功复制出类似原图的东西,中间会有像素少得多的简化表示,虽然我们不知道模型中元素的含义,但它成功捕捉到了图片的本质。 总之,计算的不可约性将阻止我们完全依靠人工智能解决所有问题,总会有更多有待发现和需要更多计算才能达到的东西。
2024-11-13
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
如果你是一位负责销售业务的一线人员,请你提出三个遇到的问题并提出解决建议,你会怎么说
以下是作为负责销售业务的一线人员可能遇到的三个问题及解决建议: 问题一:如何从不同来源的复杂数据中准确提炼关键信息生成详细报告? 解决建议: 1. 明确进行数据分析的目标,确定是理解业务、优化业务还是预测未来。 2. 全面收集整理与清洗相关数据,包括销售数据、客户反馈、财务报告等,通过公司的数据库、营销工具、调查问卷等方式收集,并做简单的数据清洗。 3. 让 ChatGPT 学习相关数据的含义和用法,输入不同来源的数据,如销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等。 问题二:怎样根据数据分析得出能有效指导业务的重要结论? 解决建议: 1. 借助 ChatGPT 生成的结果,深入分析不同来源的数据。 2. 从提高销售额和市场份额的营销策略和活动方面,如考虑降低产品价格、提供更好服务、优化产品设计和功能、加大市场推广力度等。 3. 关注影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。 4. 重视影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。 问题三:如何根据汇报对象的身份对营销报告进行恰当的可视化调整? 解决建议: 1. 报告内容可涵盖销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。 2. 针对下属,报告重点可放在具体业务执行和改进措施上。 3. 对于跨部门平级,强调合作与资源协调方面的内容。 4. 向领导汇报时,突出关键指标和整体战略方向的成果与问题。
2024-11-01