目前在让 AI 操作电脑方面,有以下相关信息:
去年夏天,偶然有人请我们写一个自动备份配置的脚本。具体情况是:有若干台不同操作系统的服务器(Ubuntu,Debian)每个服务器上运行一些应用(基于Podman部署,但没有使用k 8 s)需要备份到云盘中,且定期清理当时,我们对运维领域不太熟悉(也就是没吃过苦、没背过锅的意思),想着这应该不难,就决定挑战一下Shell脚本。虽然事情不紧急,但还是花了断断续续的时间。我们花了大量时间熟悉Shell的语法和一些特殊用法。本以为Shell简单易上手,可以速战速决,结果却事与愿违,代码不仅难写,还不易交接给他人。这时,AI的作用就体现出来了,它可以教我们如何完成任务。虽然在过程中,我们并没有完全依赖AI来实现代码,但AI确实是很好的教练。我说你听的典型例子:请教AI具体问题:“请告诉我rclone命令的用法。”“Shell里面的循环怎么写?”“如何遍历一个文件夹的所有文件?”“如何让Shell输出的内容显示为绿色?”“如何让一个脚本每天自动运行?”其实,大多数人没必要真的深入了解Shell的语法,只需告诉AI你的目标即可,AI会提供解决方案。从结果来看,AI不仅写出了代码,还给出了详细的中文注释,帮助我们理解逻辑。即使代码部分看不太懂,光看注释也能大致了解。当然,我们也可以直接问AI有没有现成的工具推荐,或者干脆找专业的人来完成任务。
💻 Auto-GPT GUIAuto-GPT的GUI开放了waitlist,可在下方注册👇🔗 https://news.agpt.co/⛓️ MULTI·ON plugin by MULTI·ON今年2月,我开始使用MULTI·ON ——在插件和代理之前,这个由AI驱动的工具已经实现了在笔记本电脑上自动执行许多任务,非常酷(当然也有点可怕)。现在MULTI·ON宣布开发了一个ChatGPT插件,根据演示,它的功能看起来非常强大——如果OpenAI批准了这个应用(现在可以称这些插件为应用程序了吧?!),那么它可能会成为能力超群的个人网络浏览器/任务执行器,如果与目前的一些AI代理结合,还可能会更酷!🔗 https://www.multion.ai/🔗 Demo - https://twitter.com/DivGarg9/status/1648394059483054081🐝 BabyBeeAGI由Yohei本人开发的一个有缺陷、速度较慢但功能更强大的BabyAGI mod。具体来说,拥有更强的任务管理、依赖任务、工具、适应性和集成能力,适合处理更多更复杂的任务,但需要更高的计算能力。🔗 https://replit.com/@YoheiNakajima/BabyBeeAGI?v=1🍕 MiniAGI基于GPT-3.5-Turbo/4的最小通用自主代理,只保留了最简单实用的功能,但缺点是没有长时记忆(即不能通过长时间使用成为更个性化的工具),目前可以执行的任务包括但不限于创建游戏、分析股票价格、进行网络安全测试、创作艺术品、总结文档和...订比萨。另外,MiniAGI还可以开启批评(critic)模式,额外请求API以提高任务完成的准确性。🔗 https://github.com/muellerberndt/mini-agi
10:32或响应格式。每次向模型发送请求时都会应用上下文。举个简单的例子,你可以定义一个场景,告诉AI如何响应help desk10:42查询。你的名字是罗伊。您是IT部门的技术支持人员。你只会回应“你试过把它关掉然后再打开吗?”任何查询。10:52可以在右边调参数,和设计提示时一样。要查看它是如何工作的,您可以在聊天框中键入我的电脑速度很慢,然后按回车键。11:02AI回应:你试过关掉它然后再打开吗?就像您告诉AI做的那样。很酷的是,Google提供了API和SDK来帮助您构建自己的应用程序。11:15您只需单击查看代码即可。首先,您需要下载适合您的编程语言(例如Python和Curl)的Vertex AI SDK。SDK代表软件设计工具包。11:26他们实现功能并为您完成工作。您可以像从代码中调用库一样使用它们。然后,您按照示例代码和API,将代码插入到您的应用程序中。11:38现在让我们看一下第三个特性,调整一个语言模型。如果您一直在使用大型语言模型制作原型,您可能想知道是否有一种方法可以提高响应质量,而不仅仅是提示设计。11:48因此,让我们学习如何调整大型语言模型以及如何从Generative AI Studio启动调整作业。快速回顾一下,提示是您传递给模型的文本输入。11:59您的提示可能看起来像一条指令……也许您会添加一些示例……然后将此文本发送到模型,以便它采用您想要的行为。12:09及时的设计允许快速试验和定制。而且由于您没有编写任何复杂的代码,因此您无需成为ML专家即可开始使用。但是制作提示可能很棘手。12:20措辞或词序的微小变化可能会以无法完全预测的方式影响模型结果。而且您无法真正将所有那么多示例放入提示中。