Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI能回答目前解决不了的问题吗

Answer

人工智能不能解决目前所有的问题。例如在科学领域,我们还没有解决所有想要解决的问题,很多时候我们似乎没有选择研究内容的权利,比如大自然会迫使我们去研究某些方面。这就不可避免地让我们面对计算不可约性。

有许多问题都遵循类似的模式,如在游戏图中找到获胜的游戏序列、通过可能性图的移动寻找谜题的解决方案、在给定公理的情况下找到定理的证明、在给定基本反应的情况下寻找化学合成途径,以及解决大量的 NP 问题,这些问题中存在许多“非确定性”的计算路径。

在实际情况中,相关的图通常非常大,所以挑战在于不追踪整个可能性图的情况下找出要采取的步骤。常见的方法包括尝试为不同的可能状态或结果分配分数,并只追求分数最高的路径。在自动定理证明中,也常见从初始命题“向下”和从最终定理“向上”工作,试图找到路径在中间的交汇点。还有一个重要的想法是,如果确定了从 X 到 Y 存在路径,就可以将 X → Y 作为新规则添加到规则集合中。

另外,查看自动编码器内部可以提取出它提出的简化表示。当数据在神经网络中流动时,会努力保留重现原始输入所需的信息。如果某一层的元素较少,那么该层的元素就对应于原始输入的某种简化表示。以经过大量网络图像训练的标准现代图像自动编码器为例,给它输入一张猫的图片,它能成功复制出类似原图的东西,中间会有像素少得多的简化表示,虽然我们不知道模型中元素的含义,但它成功捕捉到了图片的本质。

总之,计算的不可约性将阻止我们完全依靠人工智能解决所有问题,总会有更多有待发现和需要更多计算才能达到的东西。

Content generated by AI large model, please carefully verify (powered by aily)

References

沃尔夫勒姆:人工智能能解决科学问题吗?

But we certainly know we haven’t yet solved everything we want in science.And in many cases it seems like we don’t really have a choice about what we need to study; nature,for example,forces it upon us.And the result is that we inevitably end up face-to-face with computational irreducibility.但我们当然知道我们还没有解决科学上我们想要的一切。在很多情况下,我们似乎并没有真正选择我们需要学习什么;我们只能选择学习什么。例如,大自然将其强加于我们。结果是我们不可避免地要面对计算不可约性。As we’ll discuss,AI has the potential to give us streamlined ways to find certain kinds of pockets of computational reducibility.But there’ll always be computational irreducibility around,leading to unexpected “surprises” and things we just can’t quickly or “narratively” get to.Will this ever end?No.There’ll always be “more to discover”.Things that need more computation to reach.Pockets of computational reducibility that we didn’t know were there.And ultimately—AI or not—computational irreducibility is what will prevent us from ever being able to completely “solve science”.正如我们将讨论的,人工智能有潜力为我们提供简化的方法来找到某些类型的计算可简化性。但总会存在计算的不可约性,导致意想不到的“惊喜”以及我们无法快速或“叙述性”到达的事情。这会结束吗?不,总会有“更多有待发现”。需要更多计算才能达到的东西。我们不知道存在一些计算可简化性。最终,无论是否有人工智能,计算的不可约性将阻止我们完全“解决科学问题”。

沃尔夫勒姆:人工智能能解决科学问题吗?

There are many kinds of problems that follow this same general pattern.Finding a winning sequence of plays in a game graph.Finding the solution to a puzzle as a sequence of moves through a graph of possibilities.Finding a proof of a theorem given certain axioms.Finding a chemical synthesis pathway given certain basic reactions.And in general solving a multitude of NP problems in which many “nondeterministic” paths of computation are possible.有许多种问题都遵循同样的一般模式。在游戏图中找到获胜的游戏序列。通过可能性图的一系列移动来寻找谜题的解决方案。在给定某些公理的情况下找到定理的证明。在给定某些基本反应的情况下寻找化学合成途径。一般来说,解决大量NP问题,其中许多“非确定性”计算路径都是可能的。In the very simple example above,we’re readily able to explicitly generate a whole multiway graph.But in most practical examples,the graph would be astronomically too large.So the challenge is typically to suss out what moves to make without tracing the whole graph of possibilities.One common approach is to try to find a way to assign a score to different possible states or outcomes,and to pursue only paths with(say)the highest scores.In automated theorem proving it’s also common to work “downward from initial propositions” and “upward from final theorems”,trying to see where the paths meet in the middle.And there’s also another important idea:if one has established the “lemma” that there’s a path from X to Y,one can add X → Y as a new rule in the collection of rules.

沃尔夫勒姆:人工智能能解决科学问题吗?

But now the idea is to look inside the autoencoder,and to pull out a reduced representation that it’s come up with.As data flows from layer to layer in the neural net,it’s always trying to preserve the information it needs to reproduce the original input.And if a layer has fewer elements,what’s present at that layer must correspond to some reduced representation of the original input.但现在的想法是查看自动编码器的内部,并提取它所提出的简化表示。当数据在神经网络中从一层流向另一层时,它总是试图保留重现原始输入所需的信息。如果一个层的元素较少,则该层的元素必须与原始输入的某种简化表示相对应。Let’s start with a standard modern image autoencoder,that’s been trained on a few billion images typical of what’s on the web.Feed it a picture of a cat,and it’ll successfully reproduce something that looks like the original picture:让我们从标准的现代图像自动编码器开始,它已经过网络上典型的数十亿张图像的训练。给它喂一张猫的图片,它会成功地复制出看起来像原始图片的东西:But in the middle there’ll be a reduced representation,with many fewer pixels—that somehow still captures what’s needed of the cat(here shown with its 4 color channels separated):但在中间会有一个减少的表示,像素少得多,但不知何故仍然捕捉到了猫的需要(这里显示了它的4个颜色通道分开):We can think of this as a kind of “black-box model” for the cat image.We don’t know what the elements(“features”)in the model mean,but somehow it’s successfully capturing “the essence of the picture”.我们可以将其视为猫图像的一种“黑盒模型”。我们不知道模型中的元素(“特征”)意味着什么,但不知怎的,它成功地捕捉了“图片的本质”。

Others are asking
免费图生视频AI有哪些
以下是一些免费的图生视频 AI 工具: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上生成视频,由 Stability AI 开源。 3. Adobe Firefly:支持文生视频、图生视频、视频翻译,免费用户赠送生成 2 个视频。访问。 4. 混元:腾讯视频模型,目前只支持文生视频,图生视频即将上线。 更多的文生视频的网站可以查看这里: 内容由 AI 大模型生成,请仔细甄别。
2025-02-17
Ai工业机械设计
以下是关于 AI 工业机械设计的相关信息: AI 绘画在工业机械设计中的应用: Midjourney 可生成包含工业机械的相关图片,如一个数据图标,蓝色渐变磨砂玻璃,磨砂玻璃建筑,白色透明科技感白色城市建筑场景,数据线链接,芯片等元素,具有高细节灰色背景与简单的线性细节,工作室照明,3d,c4d,纯白背景,8k 等特点。质感不错,可多尝试喂不同构图的图片,喂图玩法对图片影响最大的是参考图,建议多跑跑图。 AI 在航天器零部件设计中的应用: NASA 研究工程师瑞安·麦克莱兰使用商业 AI 工具设计既轻又坚固的任务硬件。AI 工具能在一小时内生成 30 或 40 个想法,设计的零件比人类设计的更强壮、更轻,且会提出人类想不到的想法,但有时也会犯人类不会犯的错误。 获取 AI 生成 CAD 图相关资料的途径: 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索。 专业书籍:查找相关专业书籍了解应用和案例。 在线课程和教程:参加 Coursera、edX、Udacity 等平台上的课程,在 YouTube 等平台查找教程和演示视频。 技术论坛和社区:加入如 Stack Overflow、Reddit 的 r/AI 和 r/CAD 等,与专业人士交流学习,关注相关博客和新闻网站。 开源项目和代码库:探索 GitHub 等开源平台上的相关项目,如 OpenAI 的 GPT3、AutoGPT 等在 CAD 设计中的应用。 企业案例研究:研究如 Autodesk、Siemens 等公司在 AI 在 CAD 设计中的应用。 在学习和研究 AI 生成 CAD 图时,掌握相关基础知识和技术细节很重要,通过多种途径逐步掌握其应用和实现。随着 AI 技术发展,在 CAD 设计中的应用会更广泛,为设计师和工程师提供更多辅助和支持。
2025-02-17
Ai工业设计
以下是关于 AI 工业设计的相关信息: 在小红书博主方面,有诸如 Ai HFBY 等博主从事工业设计相关内容的分享,您可以通过相应链接查看他们的作品和教程。 腾讯研究院的报告中提到,工业设计在基础模型和开源生态方面有所涉及,包括产品迭代、VR 构建的虚拟环境等。当前存在训练数据稀缺、泛化能力有限等瓶颈,未来方向包括 GANs 数据生成、迁移学习优化等。同时,在 3D 生成方面,须解决空间几何难题,材质还原方面基于几何模型的空间结构特征生成真实感材质与纹理映射,纹理生成方法多元化,核心技术不断突破,AI 赋能加速发展,应用场景持续扩展。 分众传媒携手阿里通义大模型开拓了品牌广告 AI 营销新模式,其中的 AI 创意设计包含 AI 设计、AI 生图、模板中心等能力,可通过对话方式表达设计需求,利用文生图/图生图能力解决各类营销场景素材生成需求,并提供数十万精选模板降低创意制作门槛。
2025-02-17
如何快速入门AI工具
以下是快速入门 AI 工具的一些建议: 1. 对于普通人来说,对 AI 最好的直观初接触有两个方面: 最低成本能直接上手试的工具是什么,自己能否亲自尝试。 现在最普遍/最好的工具是什么,能达到什么效果。 2. 虽然底层都是大模型,但 AI 工具各有侧重,不同公司也有各自的优化。关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。 3. 为了让普通人更直观地马上上手,可选择以下几种工具展开说明:聊天工具、绘画工具、视频工具、音乐工具。 4. 对于超出自己理解范围内的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。 5. 在面向父母的“AI 布道”活动中发现,因“AI 工具”功能强大能做无数事情,反而在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,是让普通人在这场 AI 浪潮中受益的最好方式,不论是什么人群。 6. 最后,如果想交流并一起在 AI 路上探寻,欢迎戳 。
2025-02-17
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
即梦ai里,关于智能画布中的参考图的具体作用
在即梦 AI 中,智能画布中的参考图具有以下重要作用: 1. 实现多种商业创意设计:只需上传一张参考图,就能快速生成多种创意设计,例如模特图的变装、换发型、换脸、换发色和调整人物姿势;产品图的材质和背景改变;电商海报的背景、元素更改等。 2. 提升设计的灵活性和可塑性:在奶茶宣传图的制作中,参考图在制作步骤中发挥了关键作用,如在第 1 步找参考图,为后续的生成和融合等操作提供基础。 基础操作包括: 1. 打开即梦官网 https://jimeng.jianying.com/ 。 2. 选择图片生成。 3. 选择导入参考图(上传一张参考图,点击智能参考)。 相关案例: 1. 模特图自由定制:通过智能参考,轻松实现模特图的多种变化。 2. 产品图随心变化:可以改变产品材质和画面背景。 3. 电商海报一键搞定:支持随意更改背景、元素,适应不同营销主题。 原文链接:https://mp.weixin.qq.com/s/sD0RFMqnFZ6Bj9ZcyFuZNA
2025-02-17
ai 视频对话,会有哪些应用场景呢,能解决哪些文字性ai 解决不了的复杂性问题呢
AI 视频对话具有以下应用场景和能够解决的文字性 AI 难以处理的复杂问题: 快速的视频剪辑:仅需输入镜头脚本,即可从素材库提取内容进行拼接。 快速的图生视频:结合图像识别,根据镜头脚本提取相同 seed 值的图片,通过特定思路生成短时长视频并自动化拼接。 快速诊断:类似于医疗诊断。 为视觉障碍人士提供视频内容的音频描述。 在视频监控中自动识别和报告重要事件。 一些领先的视频配音特效 AI 工具包括: Wavel Studio:支持 30 多种语言的配音,音质自然流畅,能自动去除背景噪音和杂音,提供添加字幕和文本叠加层的工具,界面友好且有多种自定义选项。 Elai.io:支持 65 多种语言的配音,音色和语调真实,能自动将唇形与语音同步,生成字幕提高视频可访问性,支持多位配音者适合复杂对话场景。 Rask AI:支持 130 多种语言的配音,包括稀有和濒危语言,采用先进语音合成技术音质高保真,提供语音参数自定义和音效添加工具,与多种视频编辑平台和工作流程整合。 Notta:提供快速实惠的多语言配音解决方案,保留原声说话风格和细微差别,提供调整语音速度和音调的工具,支持批量处理。 Dubverse:支持 60 多种语言的配音,音质接近真人,提供文本转语音和语音克隆功能,提供语音参数自定义和情感添加工具。 MMVID 能够执行的任务包括: 音频描述:为视觉障碍人士提供视频内容的详细音频描述。 基于视频的问答:根据视频内容回答问题,需深入理解情节和上下文。 视频摘要:创建视频的摘要,突出重要或有趣部分。 说话人识别:在视频中识别说话人。
2024-09-10
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
你能回答关于AI以外的事情吗?有关于AI的方面你又知道多少。
以下是关于 AI 的相关知识: 1. 基础方面: 背景知识:包括人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 2. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 3. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 4. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 关于 WaytoAGI 网站,它提供以下功能: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 请注意,我只能为您提供与 AI 相关的知识和指导,对于其他非 AI 领域的内容,我的知识库中没有相关信息。
2025-02-16
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
有哪些主流的大模型?用英文回答
The mainstream large models include: OpenAI: GPT3.5 and GPT4. GPT3.5 initiated the current AI boom in November, and GPT4 was first released in spring with more powerful functions. A new variant uses plugins to connect to the internet and other applications. Microsoft's Bing uses a mixture of GPT4 and GPT3.5 and is often the first to introduce new features in the GPT4 family. Google: Bard, driven by various base models, recently a model named PaLM 2. Anthropic: Claude 2, which is notable for having a very large context window.
2025-02-13
如何让纳米ai的Deepseek接口回答的更加精确
要让纳米 AI 的 DeepSeek 接口回答更加精确,可以从以下几个方面入手: 1. 强化学习策略:在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。其中准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 2. 注重细节和语气:DeepSeek 在回答时能够还原特定的语气,如帝王的语气,且对历史细节熟悉,兼顾可读性。同时,输出充满具体而惊人的细节,行文的隐喻拿捏到位,高级且能准确传达含义。 3. 结合深度探索和联网搜索:这可能有助于获取更全面准确的信息,从而提高回答的精确度。
2025-02-12
如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?
以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略: 1. 如何评估不同 AI 模型的性能和适用场景? 2. 怎样选择适合自己需求的 AI 工具和技术? 3. 在 AI 领域,哪些基础知识是必须牢固掌握的? 4. 如何将 AI 应用于实际项目中,以获得更好的效果? 5. 对于 AI 产生的结果,如何进行有效的评估和验证? 6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识? 7. 在学习 AI 时,如何避免常见的错误和陷阱? 8. 如何培养自己在 AI 方面的创新思维和解决问题的能力? 9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同? 10. 在 AI 学习中,如何平衡理论学习和实践操作?
2025-02-17
角色:你是一名房地产开发公司的总经理 背景:现在要在公司内部推广AI工具的使用,通过具体AI工具解决公司内部各部门具体问题,来提升工作效率。 任务:请你完成年度AI提升工作效率的工作策划, 要求:工作策划要有目标、行动计划、团队人员需求及分工、具体AI工具及对应解决的问题、需要费用明细及资源需求、有哪些风险点
由于您提供的内容中没有具体的相关信息,以下为您生成一份较为通用的房地产开发公司年度 AI 提升工作效率的工作策划示例,您可以根据实际情况进行调整和完善。 一、目标 通过在公司内部推广 AI 工具的使用,在本年度内实现各部门工作效率提升 30%以上,降低人力成本 15%左右,提高项目质量和客户满意度。 二、行动计划 1. 第一季度 进行市场调研,了解适合房地产开发行业的 AI 工具。 组织内部培训,让员工初步了解 AI 工具的应用。 2. 第二季度 针对各部门需求,选择并引入相应的 AI 工具进行试点应用。 建立数据收集和分析机制,为 AI 工具的优化提供支持。 3. 第三季度 对试点部门的应用效果进行评估和总结。 根据评估结果,对 AI 工具进行调整和优化。 4. 第四季度 在全公司范围内推广成熟的 AI 工具应用。 对全年的 AI 应用效果进行总结和评估。 三、团队人员需求及分工 1. 成立 AI 推广小组 组长:负责整体工作的规划和协调。 技术专家:负责 AI 工具的选型、配置和技术支持。 培训师:负责组织员工培训和指导使用。 数据分析师:负责收集和分析数据,为工具优化提供依据。 部门联络人:每个部门指定一名联络人,负责与推广小组沟通本部门的需求和问题。 四、具体 AI 工具及对应解决的问题 1. 智能客服系统 解决客户咨询响应不及时的问题,提高客户满意度。 2. 项目管理 AI 工具 优化项目进度安排和资源分配,提高项目管理效率。 3. 市场分析 AI 工具 精准分析市场趋势和客户需求,为项目定位提供依据。 五、需要费用明细及资源需求 1. 费用明细 AI 工具采购费用:万元。 培训费用:万元。 技术支持和维护费用:万元。 数据采集和分析费用:万元。 2. 资源需求 服务器和存储设备,以支持 AI 工具的运行和数据存储。 足够的网络带宽,确保数据传输的流畅性。 六、风险点 1. 员工对新技术的接受度和适应能力可能较低,需要加强培训和引导。 2. AI 工具的应用效果可能不如预期,需要及时调整和优化。 3. 数据安全和隐私保护可能存在风险,需要建立完善的防护机制。
2025-02-13
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10