Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题

Answer

进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点:

  1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。
  2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。
  3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。
  4. 大模型产品的两个方向:
    • 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。
    • 场景化:给 AI 装上“手”和“眼睛”。
  5. 在工作中使用 AI 工具的情况:
    • 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。
    • 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。
    • 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。
    • 29%的用户将其作为工作创意助手以及数据报告的处理。
  6. AI 工具的改进方向:
    • 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。
    • 提升个性化和智能化程度,理解并适应用户的个性化需求。
    • 更精准识别合适场景,满足不同场景的使用需求。
  7. 使用 AI 完成任务时:
    • 对于简单需求,给 AI 下达明确命令完成一次性任务。
    • 了解 AI 编程的边界和限制。
    • 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。

总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。

Content generated by AI large model, please carefully verify (powered by aily)

References

混沌 AI 大会(7月8日)

1.对AI发展的态度,不FOMO,也不JOMO2.可能成功的AI公司,都应该打造自身的数据飞轮对AI产业链的一个经典划分,是基础设施层、模型层、中间层和应用层,应用场景的横向划分可以主要分为ToC和ToB。在当下,我们认为未来真正能出现一家AI新公司,去挑战现有巨头,还得是敢于从ToC场景里寻求突破的,因为C端能带来的数据飞轮效应,可能是在AI早期决胜的关键;3.有专业壁垒的垂直模型也许是机会所在前Google创始人Eric Schmidt有一个观点,他认为未来会是多个垂直模型或者多个垂直助理,包括各种高价值、专业化的AI系统。这是因为很多高价值、特定领域的工作流程,特别且必须依赖于丰富的专有数据集。AI时代可能会颠覆SaaS时代的很多想法。我们在当下会去看一个AI应用有多少是GPT等大模型的能力,有多少是自己的能力。如果壁垒太低,很多产品可能活不过GPT的一次迭代升级。4.大模型产品的两个方向:个性化&场景化个性化:给它装上“记忆”,令AI可以真正成为人类的工作助理或是陪伴者场景化:给它装上“手”和“眼睛”实践尝试的意义永远大于坐而论道通过拥抱AI而获得实际的数据增长:Notion和Character.AI专业化、垂直模型的先行场景:DoNotPay和法律应用虽然很小,但意义重大的例子:医疗领域的应用关于AI创业的几点建议AI的学习和应用,大家一定注意,用起来、有效迭代大于一切大家可以尝试形成正确的底层工作逻辑,或者设计正确的AI改变工作生活的流程,按节奏确定目标和复盘AI浪潮在这个阶段,一定是技术驱动为先和定义产品为重的AI创业,不但要能用好市面上的AI工具,更要从AI效率、变革的角度,去组织公司架构如果你是在做ToC产品,那数据飞轮带来的正反馈效应非常重要在当下AI相关如此火的状态,也对创始人提出了更高、更全面的要求AI创业一定要把握好融资节奏

AI工具对产品工作的变化(调研问卷结果)

从本次调研数据看,通过自然语言对话,单次或几次互动就可以完成一次性任务,是目前最常用AI工具处理的工作任务类型。90%的产品从业者,使用AI工具辅助文本信息处理生成。63%的用户在工作中使用AI工具辅助搜索,甚至优先用AI搜索信息。有45%的用户会借助AI生成图片以及音视频,用于快速制作demo演示效果是最主要场景,也有少部分情况会用于制作最终产品。有29%的用户会将AI作为工作创意助手以及数据报告的处理。GPT4,你怎么看这个数据:…我们可以看出AI工具在协助处理工作任务方面有以下几点可以改进的地方。提高创新性和创新辅助能力:很多产品从业者选择使用AI作为创意助手,但这一比例相对较少。这可能是因为现有的AI工具在协助创新设计、数据解读等高层次任务方面还存在一定的局限,比如无法理解复杂的创新需求,或分析结果过于直接和缺少深度。对这方面的改进除了技术手段,也可能需要更多关注产品从业者的工作模式和思维习惯,提供符合他们工作特性的工具和服务…提升个性化和智能化程度:每一个产品从业者的工作习惯、技能水平以及对工具的需求都是独特的。AI工具需要能够理解并适应这些个性化需求。此外,智能化程度也可以进一步提升,如通过机器学习等方式,使得工具能够记住用户的偏好,预测用户的需求…对合适场景的更精准识别:一种AI工具可能并不能满足所有场景的需求,AI工具需要更深入的理解用户在每个具体场景下的使用需求...

放下傲慢!停止自欺欺人!与其做 AI 的主人,不如做它的搭档

在许多情况下,我们只需给AI下达明确的命令来完成一次性任务,例如制作一个简单的Chrome插件、编写脚本、或创建Python爬虫。但当AI满足了我们简单的需求,并让我们获得正反馈之后,我们的期待也会不断提高,希望能进一步从繁琐的日常任务中解脱出来。这个时候,我们需要了解AI编程的边界和限制。[heading2]3.1 AI编程准则第一条:能不编,尽量不编[content]随着IT技术的发展,各种基础设施和工具越来越多,大多数需求都能找到现成的软件解决方案,只需权衡投入产出,进行评估即可。[搜索技巧的逆袭:在AI统治的世界中寻找价值](https://iaiuse.com/posts/af894b2a)成熟产品优先找线上工具:例如制作白底图等功能,如果线上有现成的工具那最好。其次找插件:基于现有系统找合适的插件。最后是本地应用:当线上工具和插件都不满足需求时,再考虑本地应用。API功能先找现成的开源工具,GitHub上很多。然后考虑付费服务。如果都找不到现成的方案,才考虑自己编程。毕竟,人生苦短,何必为难自己呢?如果真的需要动手编写,也要以终为始,抛开技术障碍,聚焦于目标。

Others are asking
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
有哪些好用的法律ai
以下是一些好用的法律 AI 应用场景和示例: 1. 诉讼策略制定: AI 将基于商标法等相关条款和案例法,为商标侵权案件提供诉讼策略,包括对原告商标权利的分析、被告侵权行为的评估、关键证据搜集建议、法律抗辩点及和解或调解策略。 其他例子: 为专利侵权案件制定诉讼策略,分析专利有效性、被告侵权行为及抗辩理由,提出证明侵权和计算损害赔偿的建议。 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略,包括主张权益、证据收集重点及证明雇主违约行为。 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略,包括证明许可协议违反、计算损失赔偿及可能的合同解除条件。 模拟法庭,如模拟商业合同违约的法庭审理,分析双方论点、证据和法律依据,预测判决结果,给出优化法庭陈述和证据呈现的建议。 2. 法律意见书撰写: AI 根据案件背景、证据材料和法律法规,自动撰写初步法律意见书,包含案件事实梳理、法律分析和结论。 其他例子: 针对商业秘密泄露案件,分析法律责任和赔偿范围,撰写法律意见书,提供应对策略。 为计划上市的公司提供关于公司治理结构的法律意见书,确保符合相关法规要求。 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,制定应对措施。 起草股权转让协议,包括转让方和受让方信息、股权转让份额、价格、支付方式和时间表、先决条件、双方权利义务、保密、违约责任和争议解决条款等。 3. 指令风格和技巧: 可指定 AI 模仿某位资深律师的逻辑严谨和言简意赅的风格,使其提供的信息更符合专业律师的沟通和表达习惯。 运用 PEMSSC 方法,如选择个性化的风格、给出参考或逻辑结构、从多个角度思考、进行总结概括、使用分隔符号区分等。 个性化风格:选择幽默且富有洞察力的风格,融入创新视角。 参考和逻辑结构:在提供法律建议时,采用 SWOT 分析法或 4P 原则等逻辑结构。 多角度思考:在分析商事诉讼时,从市场趋势、竞争对手行为、战略规划、财务状况和市场前景等角度思考诉讼策略。
2025-04-18
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
大模型 个性化 电商
大模型在电商领域的应用主要体现在以下方面: 1. 生成电商服饰数据:以大元模型广场为例,可让大模型按要求生成电商服饰数据(含尺码、价格、描述等信息,输出为 Excel 结构),用于辅助运营小二回复问题沉淀;当缺少真实数据或担心数据安全时,还可用示例数据跑测试及做非结构化清洗。 2. 个性化营销:在广告营销行业,大模型从初期的市场分析、中期的客户转化以及后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验,而对于广告图案的生成完全可以通过 AI+设计相关的 SOP 来提高效率。 在医疗行业,大模型的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,研究者通过训练集让 AI 学习分子特点,最终成功识别出符合要求的分子。目前很多医疗研究机构都进行医疗大模型的开发研究。 在图像生成领域,如 Midjourney 发布了模型个性化 Personalization 或'p'的早期测试版本。其工作原理是学习用户的喜好,以便更可能用用户的口味来填补空白。使用时只需在提示后输入p,或使用提示栏中的设置按钮为所有提示启用个性化功能,还可以使用s 100 控制个性化效果的强度。但个性化目前不是一个稳定的功能,会随着更多的成对排名而变化,并且可能会推出算法更新。
2025-04-11
我需要一个能够生成适合初中生的个性化的英语单词清单,用什么工具比较合适
以下为您推荐几种适合生成适合初中生个性化英语单词清单的工具: 1. DeepSeek:您可以输入单词主题、图片风格、单词数量等,它会为您输出指定数量的相关单词,并以数组形式呈现,包括单词、中文、美式音标以及相关的英文句子和中文翻译。 2. Claude:您可以输入任意三个中文词语或一个主题让其随机生成 Word Search 表格,有助于提升初中生的语言能力、专注力、认知能力等。 3. 利用搞定设计结合 ChatGPT:通过搞定设计制作单词卡模板,然后使用 ChatGPT 生成单词内容并整理放入 Excel 文件中,实现批量制作单词卡片。
2025-02-26
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
为不同学生制定个性化的学习计划
以下是为不同学生制定个性化学习计划的相关内容: 教育科技长期以来在有效性和规模之间权衡,而 AI 的出现改变了这一状况,使得大规模部署个性化学习计划成为可能。例如,有像 Speak、Quazel、Lingostar 这样的应用能提供实时交流和反馈的语言学习服务;Photomath 和 Mathly 可指导学生解决数学问题;PeopleAI 和 Historical Figures 能通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具能帮助学生提升写作水平,Tome 和 Beautiful.ai 能协助创建演示文稿。 大模型在教育行业也发挥着重要作用,它能精确洞察每个学生的独特需求,为其量身打造学习方案,还能赋能教师提高教学效果和工作效率。基于 GLM 模型的先进功能,教师和学生能接触到高效的数据分析及智能化评价系统。 对于教育工作者,可通过以下方式为不同学生制定个性化学习计划: 1. 尝试使用 AI 辅助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 2. 探索使用 AI 分析学生学习数据,从而制定个性化学习路径。 3. 考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 4. 开发简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 总之,与 AI 协作是一个学习过程,应保持好奇心和开放态度,从小处着手,将 AI 视为强大工具,同时保持批判性思维。
2025-01-13
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
我想建立 ai 客服帮我解决一些专业化的客服问题
以下是关于建立 AI 客服的相关信息: 传统智能客服企业在 LLM 时代面临困境,如明星智能客服企业欠薪、部分企业解散团队或转向出海客服方向。这既有必然性也有偶然性,与智能客服行业的属性有关。 从产品角度看,智能客服分为智能部分和客服部分。智能部分基于 NLP 技术进行基于业务逻辑的 AI 对话管理,客服部分包括传统客服坐席、内部数据查询台等。 企业对客服效果非常看重,而做好客服服务需要企业产品的详细数据与用户数据,但智能客服企业在赋能时难以获取关键信息,很多采取本地部署,费力且难有积累。 您可以通过以下方式建立 AI 客服: 参考“DIN:全程白嫖拥有一个 AI 大模型的微信助手”,一个能解答任何问题的 AI 机器人,可接入微信或群聊,为用户提供自动答疑服务,还能投喂特定知识,成为客服、专业老师或知识备忘录,无需技术知识,小白也能轻松搭建,全程只需复制粘贴,可自定义知识库,满足不同需求,支持多场景应用,如客服、教育、个人知识管理等。 了解“零基础模板化搭建 AI 微信聊天机器人”,微信有多种功能,如个人微信/微信群、微信公众号、微信服务号、微信客服等,Coze AI 平台支持与微信公众号、服务号、客服的对接,最近 Coze 的国内版正式发布 API 接口功能,可对接个人微信甚至微信群。相关部署方法对国外版或国内版 Coze 均适用,但对接国外版需服务支持黑魔法。
2024-10-03
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
AI 自动安排批量设置工作任务的个人效率 app 推荐
目前在市场上,有一些可以实现 AI 自动安排批量设置工作任务以提升个人效率的应用程序,以下为您推荐几款: 1. Todoist:它具有强大的任务管理功能,支持设置优先级、提醒和分类,能帮助您合理规划工作任务。 2. Microsoft To Do:与微软生态系统紧密集成,方便您在不同设备上同步任务,并进行批量设置。 3. Trello:以看板的形式展示任务,直观清晰,便于批量安排和跟踪工作进度。 您可以根据自己的需求和使用习惯选择适合您的应用程序。
2025-04-07
AI 自动安排批量设置工作任务的效率工具。
以下是关于 AI 自动安排批量设置工作任务的效率工具的相关内容: 对于中小企业利用人工智能(AI)进行转型,在任务自动化方面: 首先要评估和识别日常重复性高的任务,通过分析工作流程、观察和记录员工工作,确定耗时且重复性高的活动,明确通过观察和记录要达成的具体目标,如提高效率、减少错误率等,计划和安排对员工日常工作的观察,与员工交谈了解其看法,分析收集的数据以确定可优化的任务,并制定引入新工具等具体行动计划。 最后引入自动化工具,如 RPA 技术,根据企业需求和预算选择合适工具,在 IT 系统中部署并配置,进行测试和调整优化。 适合工作流化的业务一般具备以下特点: 重复性工作多,业务中的任务或流程高度重复。 业务流程固定,步骤相对固定,且具有标准化的操作流程。 以自媒体工作者为例,常见工作流步骤包括内容策划、创作、编辑、审核、发布、互动和效果分析优化等,通过 AI 标准化这些步骤并利用工具自动执行,可提高效率,让工作者有更多时间和精力专注核心业务。 一般来说,Workflow 是一系列相互连接的步骤,旨在完成特定任务或目标。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流会利用大模型等 AI 技术,被称为 AI Workflows,可分为 Agentic 和非 Agentic 。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,以实现特定任务或目标,AI Agents 被授予权限,利用其核心组件将传统工作流转变为响应式、自适应和自我进化的过程。
2025-04-07
如何设置知识库才可以提高检索效率
以下是一些提高知识库检索效率的方法: 1. 文档分块: 分块是为了后续的检索能返回更精准的答案。 避免把整个使用手册作为一个整体检索,防止返回大量无关信息。 适应模型输入限制,确保能将相关信息输入到模型中,不超出其处理能力。 提升回答质量,让大语言模型更集中地理解和回答特定问题。 优化向量表示,得到更精确的向量,提高检索准确性。 2. 选择合适的工具和平台: 如使用 Coze 时: 可以使用外贸大师产品的帮助文档进行演示。 选择其中一个文档创建知识库,如“购买后新人常见问题汇总·语雀”。 点击创建知识库,从知识库中添加知识单元,使用 Local doucuments 的方式,上传 Markdown 格式文档,注意每个问题使用“”开头。 但要注意文档的分片策略会严重影响查询结果,跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等是基于 RAG 方案自身原理导致的问题。 如使用百炼时: 在百炼控制台的中的非结构化数据页签中点击导入数据,上传相关文档。 根据文档大小,百炼需要一定时间解析,通常占用 1 6 分钟。 进入,创建新的知识库并选择上传的文件,其他参数保持默认,建立索引。 选择向量存储类型时,若希望集中存储、灵活管理多个应用的向量数据,可选择 ADB PG。 完成知识库创建后,返回,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 特别需要注意的是,不同工具和平台可能存在各自的特点和限制,需要根据实际情况进行选择和优化。
2025-03-14
我想学习AI如何使用,可以提高我的工作效率。请给我一个计划
以下是为您制定的学习 AI 以提高工作效率的计划: 首先,了解 AI 的基本概念和应用领域。AI 已经在许多方面带来了重大进展和效率提升,例如交通监控、银行账户欺诈检测、工业中的大规模安全关键实践、科学研究等。 其次,认识到 AI 在工作场所的潜力。它可以将我们从单调的任务中解放出来,让我们有更多时间从事专业工作。 然后,学习相关的法律法规。例如《促进创新的人工智能监管方法》,了解如何在合规的前提下利用 AI 创新,平衡风险与机会、利益。 在学习过程中,关注以下方面: 1. 了解大型语言模型等技术的发展,及其为经济和社会带来的转型机会。 2. 明白监管可以通过给予企业解决重要问题的激励,同时应对对公民的伤害风险,从而增加创新。 3. 熟悉国家的 AI 战略和数字监管计划中的原则,以及相应的比例方法。 最后,根据所学知识,在工作中尝试应用 AI 技术,不断总结经验,提高工作效率。
2025-03-14