直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI村民构建的AI小镇资料

回答

以下是关于 AI 小镇“离谱村”的相关资料:

离谱村之歌: 村民阿飞创作的村歌,歌词中描绘了离谱村村民不种田,只搞 AI 的狂欢。代码是他们的麦田,数据是他们的酒,机器学习、深度神经等技术他们玩得转,算法优化、模型训练如同游戏般简单。从早到晚只有键盘的敲击声,AI 的梦想正在成形。村里有智能机器人、自动车等未来元素,村民用 AI 种菜、放牛,智能管家解决烦恼。离谱村的夜因 AI 灯光而明亮,这里的故事将传遍每个角落,其 AI 成果让世界震撼。

离谱村的共创故事: 离谱村是由 WaytoAGI 孵化的 900 人共创项目,目前是用飞书做整体协同。一部完全由 AI 制作完成的短片《离谱村的故事》获得了 MIT 电影黑客松的 Best Video 第一名。其中的配音是用 Audiobox 捏出来的,为保证离谱熊声线的一致性,还用了 GPT-sovits 对其声音做了专属训练。有专门的离谱村百科和村民目录用于素材管理,接下来会引入离谱家人的共创内容。

离谱村介绍: WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,涵盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,有 1000 万的访问量。离谱村是 WaytoAGI 孵化的千人共创项目,参与者不分年龄层,通过 AI 工具创作出各种作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的样子,它不仅是物理空间,更是灵魂的避风港,激励着人们发挥想象力创造独特生活方式。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

离谱音乐会

|音乐|歌词|<br>|-|-|<br>|[26827_1711251687.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/LBT8b6ft3o90zoxqWyCcykYhn8e?allow_redirect=1)[村歌1.mp3](https://bytedance.feishu.cn/space/api/box/stream/download/all/X1f2b26XvoGtTPxY2Evcv2D5nzh?allow_redirect=1)|Yo,欢迎来到离谱村,科技的家园,这里的村民,不种田,只搞AI的狂欢。代码是他们的麦田,数据是他们的酒,每行每句,都是他们智慧的流露。机器学习,深度神经,他们玩得转,算法优化,模型训练,像打游戏般简单。从早到晚,只有键盘的敲击声,离谱村里,AI的梦想,正在成形。离谱村,离谱事,AI的故事多,智能机器人,自动车,未来已来临。这里没有不可能,只有想不到,离谱村的AI村民,创造着明天的骄傲。他们用AI种菜,用AI放牛,智能管家,帮你解决所有烦恼忧愁。离谱村的夜,不黑暗,不寂静,AI的灯光,照亮了每个角落,每个梦。离谱村,不离谱,只是走在前,AI的村民,用智慧,编织未来的画卷。这里的故事,会传遍每个角落,离谱村的AI,让世界都为之震撼。|

离谱村的共创故事

Sora来了大家都忙着建群搞流量,我和小伙伴们却沉浸在创作,用AI构建了一个离谱世界。无论是什么工具,都是对这个离谱世界的更好加持。现在是用飞书做整体协同,真的对共创者非常友好。大家一起脑洞的感觉太好了,最近在努力补电影导演编剧的知识,很多新增的文档都是在这里[离谱村的共创故事](https://waytoagi.feishu.cn/wiki/Gb1kwfwvpidKR1kU1PKciQoHnGh)一部完全由AI制作完成的短片,大家共创完《离谱村的故事》获得了MIT电影黑客松的Best Video第一名🎉AI春晚节目[heading4]剧本和配音部分[content]其中的配音都是用Audiobox捏出来的,每个人物角色都有自己的专属声音。会把捏好的声音管理起来,大家一起选最合适的那个作为正式配音。为了离谱熊声线的一致性,用了GPT-sovits对离谱熊的声音做了专属的训练。[2月18日MIT比赛离谱熊进城记](https://waytoagi.feishu.cn/wiki/Ut4SwtGG9iL1MZknfb0c7TBKnQe)[heading4]素材管理[content]专门做了个离谱村百科[离谱村百科全书](https://waytoagi.feishu.cn/wiki/ApMUw5rouijWn7kgJKScCkGVnwf)离谱村民越来越多,为此还专门建了一个离谱村村民目录,更方便做故事线和素材管理,接下来会引入离谱家人的共创内容,如果你也感兴趣,一起加入离谱共创吧。

离谱村的共创故事

先从WaytoAGI讲起WaytoAGI是由一群热爱AI的专家和爱好者共同建设的开源AI知识库,目前知识库的内容覆盖:AI绘画、AI视频、AI智能体、AI 3D等多个版块,包含赛事和活动促进大家动手实践。1000万的访问量足够展示大家对AI的热情。这个社区贡献并整合各种AI资源,使得大家都可以轻松学习各种AI知识,应用各类AI工具和实战案例等。WaytoAGI里有个离谱村离谱村是由WaytoAGI孵化的千人共创项目,让大家学习和接触AI更容易,更感兴趣。这里的参与者不分年龄层,一起脑洞和创意,都可以通过AI工具快速简单的创作出各种各样的作品,可以非常简单,有幼儿园的小朋友随时一个想法就作出奶酪老鼠,有新手小白跨界用AI学习编剧影视知识当起了“导演”,也有顶尖高手研究离谱村生物多智能体产生的社会观察实践。目标是大家一起用AI构建一个离谱世界。离谱村的世界离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村。有可能是在世界的尽头,有可能就在现实生活中,隐藏着一个被神秘与奇幻气息所笼罩的不起眼的小村庄。它也可能不存在于常规地图之上,唯有那些心怀冒险精神与未泯童心的探索者,方能发现它的踪迹。在这里,想象力是至高无上的法则,奇迹则是日常生活的一部分。村庄的一切看似荒诞不经,实则恰如其分地荒诞。然而,当我们觉得离谱村离谱时,村民或许也会以同样的眼光看待我们。离谱村不仅代表着一个物理空间,它更是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。

其他人在问
简述一下什么是AI
AI 是一门令人兴奋的科学,是某种模仿人类思维可以理解自然语言并输出自然语言的东西。 对于不具备理工科背景的人来说,可以把 AI 当成一个黑箱,只需要知道它能理解自然语言并输出自然语言即可。其生态位是一种似人而非人的存在。 最初,计算机是按照明确的程序和算法进行数字运算。但对于像“根据照片判断一个人的年龄”这类任务,无法明确编程步骤,而这正是 AI 感兴趣的。 对于三年级的孩子,可以简单理解为让计算机或机器能像人类一样思考和学习的技术。
2024-11-14
现在在生成思维导图方面做的最好的ai是哪个
以下是一些在生成思维导图方面表现出色的 AI 工具: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,能一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 此外,还有以下相关产品: 1. Mymap:打磨出色,图表种类多,能根据问题自动选择和询问合适的图表类型,速度快且信息准确。 2. AmyMind:特色是可将创建的思维导图变成 PPT 并下载编辑。
2024-11-14
现在在学术论文文献查询方面做的最好的ai是哪个
在学术论文文献查询方面,以下是一些表现较好的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,还有一些专门的工具,如: 1. TXYZ: 帮助搜索、查询专业文献并进行对话,提供一站式服务。 是与预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 支持用户上传 PDF 论文或链接,迅速找到所需答案和内容。 在对话中提供论文参考,给出可信背书。 2. 开搜 AI 搜索: 免费无广告,直达结果。 帮助在校学生快速搜集学术资料,智能总结关键信息,助力撰写论文和报告,且支持查看来源出处。 为教师群体获取教学资源、生成教案和课题研究报告提供帮助。 方便职场办公人群高效查找工作信息,简化文案撰写、PPT 制作和工作汇报准备。 为学术研究人员提供行业分析,整合和总结大量数据形成研究报告。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
有什么可以ai去图片水印
以下是一些可以用于 AI 去图片水印的工具: 1. AVAide Watermark Remover:这是一个在线工具,使用 AI 技术去除图片水印。支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,上传图片、选择水印区域,保存并下载处理后的图片。还提供去除文本、对象、人物、日期和贴纸等功能。 2. Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合需快速去水印并在社交媒体分享图片的用户。 3. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹。支持直接粘贴图像或上传手机图像,操作简便。 此外,还有以下辅助工具: 对于去除图片中特定物体(如右手的手串),除了 PS,还可以使用 PS 的 AI 版、SD 局部重绘,以及 Firefly、canva、Google photo 等的局部重绘功能,微软 Designer 也是免费的。 ProPainter 可一键移除视频内物体或水印,基于 E2FGVI 实现。 收费的去水印工具如 https://anieraser.media.io/app ,免费但效果一般的去水印工具如 https://onlinevideocutter.com/removelogo 。 这些工具各有特点,您可以根据具体需求选择最适合您的去水印工具。但还是建议购买正版去水印工具。内容由 AI 大模型生成,请仔细甄别。
2024-11-14
哪款AI能高效提取文章/文件的核心信息?
以下是一些能够高效提取文章或文件核心信息的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,可自动提取文献信息,助力管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,助力复杂数据分析和模型构建。 此外,在收集和整理资料方面,可利用以下工具和方法: 1. 收集资料: 如使用 Perplexity.AI 的强大搜索功能,还可启用 Pro 功能获取更专业深入的结果。也可使用微软的 Bing 搜索引擎等具备联网搜索功能的工具,快速搜集大量相关资料。 2. 整理资料: 可使用月之暗面开发的 Kimi 这个 AI 会话助手,分批次提供资料以克服其阅读能力限制,让其整理资讯内容。 需要注意的是,使用这些工具时,应结合自身写作风格和需求,选择最合适的辅助工具。同时,内容由 AI 大模型生成,请仔细甄别。
2024-11-14
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
如何构建自己的AI助理?
构建自己的 AI 助理可以参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 AI 助理的目的和核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建自己的【知识库】,用于回答 AI 相关知识。 创建【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计详细步骤: 先展示 AI 助理的【最终效果】界面。 构建 AI Agent 还可以类比为培养一位职场新人,包括规划阶段明确目标,将具体任务拆解为可管理的子任务并设计执行方法;实施阶段搭建工作流程,为子任务设置操作指南并验证输出质量;优化阶段通过反复测试和调整,优化性能,直到稳定输出高质量结果。您可以设定一个任务目标,动手构建专属的 AI 助理。
2024-11-08
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
如何构建有效的知识库
构建有效的知识库可以参考以下方法: 使用 Dify 构建知识库: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。 知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。于 2012 年 5 月 17 日被 Google 正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将 Web 从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。 其关键技术包括: 1. 知识抽取: 实体抽取:命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状的知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示: 属性图 三元组 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识的质量。 知识更新:不断迭代更新,扩展现有知识,增加新的知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 手把手教你本地部署大模型以及搭建个人知识库: 如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有 Open WebUI 的能力,并且额外支持了以下能力:选择文本嵌入模型、选择向量数据库。 安装地址:https://useanything.com/download 当我们安装完成之后,会进入到其配置页面,这里面主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有一个 Workspace 的概念,我们可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式。AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。当上述配置完成之后,我们就可以跟大模型进行对话了。
2024-11-04
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
如何构建一个AI助教
构建一个 AI 助教可以类比为培养一位职场新人,主要分为以下三个阶段: 1. 规划阶段:明确目标 确定 AI 助教的具体任务,例如辅导特定学科的学习、解答常见问题等。 将任务拆解为可管理的子任务,并设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程,为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 助教的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 助教。 此外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习比我们预期更快地获得知识,并带着我们人类一同进步。AI 的性质让我们可以将其一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2024-10-15