Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?

Answer

在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势:

  • 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。
  • 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。

需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告:2023 年度中文大模型基准测评报告.pdf 。但报告内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

张翼然:用AI为教师减负(3H).pdf

大语言模型的选择:主要看训练该语言用的语料集最开始,Google发布的Transformer结构算法,是⽤来语⾔翻译的。为了实现更好的翻译,特别是像同声传译这样⾼要求的任务,模型需要理解⼤量的术语和概念。通过预训练,模型可以在⼴泛的语料库中学习到这些知识,从⽽提⾼翻译的准确性和流畅度。2023年⼤语⾔模型参数⼤⼩对⽐AI领头羊们,你追我赶截⽌ 2024年6⽉ 20⽇确实,参数量⼤,回答知识性问题更好,但这道题,国产看起来也不错大模型母公司插件案例/封装提示词多模态上传文档搜索特色文心一言百度√ √指令中心√√√知识问答,古诗词通义千问阿里× √百宝袋×√√翻译、电商、法律、推理、数学讯飞星火科大讯飞√ √指令集√√×中小学教育学习、翻译智谱清言智谱华章√ √智能体√√×推理、编程、智能体、对话豆包字节跳动× √智能体√×√语音对话、知识问答、智能体元宝腾讯× √智能体√√√中文语境理解、深度阅读、游戏天工AI昆仑万维× √AI对话××√音乐生成、搜索总结Kimi月之暗面×x×√√

02-基础通识课

[heading2]智能章节本章节主要提到一个有意思的活动,可以看到一些出题海报且银海有参与。活动的出题来源是弱智巴的题目,会建微信群让群里bot变为大语言模型回复问题,真人混在机器人中,让人分辨。还提到去年国内大模型回答这些题多失败,今年有很大改进,最后提议用几个大模型产品测试问题反应。[10:48](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=648000)大语言模型的早期特点及通用、垂类模型的介绍本章节主要讲述大语言模型相关内容。提到早期大模型存在缺乏情感、一本正经胡说八道的情况。还介绍了国内去年7月大模型百花齐放,包含通用模型(如文心一言等)和垂直模型,垂直模型针对特定领域,如小语种、临床医学、AI蛋白质结构预测等。[13:38](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=818000)对比不同大模型对趣味问题的回应及续写差异本章节先提出让大家用大模型体验回答“为什么爸妈结婚没邀请我”的问题,展示了Kimi、通义千问的回答情况并期待豆包的回答。还提到让大模型续写“今天我坐在凳子上”,发现各模型回复有差异。最后指出大模型是统计模型,会根据概率预测并返回信息,所以每次续写内容都不同。[17:13](https://waytoagi.feishu.cn/minutes/obcn8c6pm95g22581ei4p1l4?t=1033000)大语言模型工作原理:训练数据、算力GPU、模型参数的作用

问:目前最火最好用的的大语言模型是哪个

[OpenAI](https://openai.com/)的GPT-4是其中一个最先进和广泛使用的大型语言模型。它在多种任务上展示了卓越的性能,包括文本生成、理解、翻译以及各种专业和创意写作任务。GPT-4通过大量数据的学习,能够理解和生成人类语言,展示了在处理复杂问题和理解上下文方面的深度能力。除了OpenAI的GPT系列,还有其他一些重要的大型语言模型,如Anthropic公司[Claude 3](https://www.anthropic.com/news/claude-3-family)、谷歌的Gemini、百度的文心一言、阿里巴巴的通义大模型等,它们在特定领域和任务上也表现出了卓越的能力。如果想了解国内的大模型效果,可以参考第三方基准评测报告:[2023年度中文大模型基准测评报告.pdf](https://waytoagi.feishu.cn/wiki/ANF7wRcJPixR00kWJINcoP1GnGf)内容由AI大模型生成,请仔细甄别。类似问题:最强大语言模型是哪个?

Others are asking
请给出目前比较火的各垂类AI工具名称
以下是目前比较火的各垂类 AI 工具: 图像生成器:有 14 个工具,如 Midjourney 等。 AI 聊天机器人:有 8 个工具,如 Claude、ChatGPT、Bing Chat 等。 AI 写作生成器:有 7 个工具,如 Rytr、Copy AI 等。 视频生成器:有 5 个工具。 语音和音乐:有 5 个工具。 设计:有 4 个工具,如 Canva 等。 其他:有 7 个工具。 此外,还有以下一些热门的 AI 工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-18
如何制作人事专员ai客服
要制作人事专员 AI 客服,可以参考以下步骤: 1. 明确功能范围: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能作为“微信客服助手”发布在微信公众号上。 2. 准备相关内容: 根据 Bot 的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建一个用于回答 AI 相关知识的知识库。 由于要按照一定规则处理知识,创建一个工作流来控制 AI 按照要求处理信息。 准备好微信公众号,以便发布机器人。 此外,智能客服助手的核心构思在于利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。具体通过创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时要对接人工客服,在智能助手无法解决用户问题时,让用户快速转接到人工客服,确保问题及时解决,这种人机结合的模式有助于提升整体服务质量和客户满意度。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
AI提效
以下是关于 AI 提效的相关内容: 在大淘宝设计部,今年通过持续探索和实战考量,将 AI 作为工具,主要使用 Midjourney 和 Stabel Diffusion 等,辅助使用 RUNWAY 和 PS beta 等。AI 改变了设计工作流的传统步骤,在营销设计中,整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。具体效果包括创意多样,项目中不同创意概念的提出数量增加了 150%;执行加速,设计师在创意生成阶段的时间缩短了平均 60%;整体提效,从创意发散到落地执行品效都有显著提升。 在软件工程方面,AI 正深刻变革软件工程,涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。自动代码生成工具提高编程效率,AI 也助力智能测试与运维。DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 夙愿学长曾给创业小团队定制过 AI 提效解决方案,他将 AI 工作流融入工作中,把 80%重复低产出的工作“外包”给 AI 干,自己只干 20%真正有价值的事情,从而实现了生活和工作的良好改变,走上了 Work Life Balance 的道路。
2025-02-18
ai生成短视频,有没有免费的工具
以下是一些免费生成短视频的工具: 1. Project Odyssey:这是全球最大的生成式 AI 视频竞赛之一,提供超过 30 种工具的免费额度,累计超过 75 万美元。 2. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映则可以根据脚本自动分析并生成对应的素材和文本框架。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频,且免费无限生成。 4. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 5. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-18
AI如何接入APP
以下是将 AI 接入 APP(以微信为例)的详细步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已接通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的“中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 再往后就是添加插件,讲解得非常清晰,完成上述步骤后,相信您也能搞定插件的安装。点击文章,会直接定位到您该操作的那一步。 6. 若认为上述步骤简单,尚有余力,可以继续看。 开始部署(这里继续): 1. 复制代码时注意复制全,每次只需要粘贴一行,然后点击一次回车。 第一步:cd /root || exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(若有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可复制网址,手动下载到电脑上,然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后,刷新一下,重新进入终端,若最左侧出现了(AI)的字符,则恭喜您。 配置环境: 1. 打开刚才保存的“外网面板地址”。 2. 输入账号密码。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装 Nginx 1.22 和 MySQL 5.7 即可,其他的取消勾选。 5. 点击“其他菜单”,出现相应样式,会让您关联,点击【关闭】,直接操作第 4 步【开始部署】。绿色字体的三个步骤可以不做。(这里的步骤,用不到,可以不关联)若想关联,可以点击【点击查看】按钮,跳转进入腾讯云。 6. 点击“API 密匙关联”点击“新建秘钥”。复制这两个,一定保存好。 7. 点击确定后,列表上会有一个 APPID,这三个串码,依次对应粘贴到刚才的登录窗口里即可。
2025-02-18
能做高等数学的AI
以下是为您整理的关于能做高等数学的 AI 的相关信息: Pi 对于高等数学的表现不稳定,有时不回答,有时能回答但可能答错,状态飘忽不定。比如在做七八道高等数学入门水平的题时,存在这样的情况。 沃尔夫勒姆认为,人工智能在“流体动力学风格”的数学水平上可能提供代码帮助,但对于真正新的、不涉及太多“样板文件”的内容,帮助有限。数学家在做数学时似乎在更高水平上对“微观元数学”进行了“粗粒度”处理。
2024-11-13
如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?
不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。 大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法: 1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。 2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。 3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。 4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。 5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。 在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。 此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。
2024-11-09
AI在高等数学中的应用
AI 在高等数学中的应用主要体现在以下几个方面: 1. 自适应学习系统:如 Khan Academy 结合 AI 技术,能为您提供个性化的数学学习路径和练习题,根据您的能力和需求精准推荐。 2. 智能题库和作业辅助:像 Photomath 这类工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:例如 Socratic 利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行高等数学学习,并取得更好的学习效果。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-12
大模型擅长的领域
大模型擅长的领域包括: 1. 自然语言处理任务: Encoderonly 模型适用于分类和情感分析等任务,如 BERT。 Encoderdecoder 模型用于翻译和摘要等,如 Google 的 T5。 Decoderonly 模型擅长自然语言生成任务,如故事写作和博客生成,也是众多 AI 助手的结构。 2. 数据处理: 预训练数据量大,往往来自互联网,包括论文、代码和公开网页等,通常用 TB 级别的数据进行预训练。 参数众多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 3. 具体应用场景: 文本生成和内容创作,如撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手,提供客户服务、日常任务提醒和信息咨询等。 编程和代码辅助,包括代码自动补全、bug 修复和代码解释。 翻译和跨语言通信,促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘,为市场研究和产品改进提供数据支持。 教育和学习辅助,创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成,如 DALLE 等模型根据文本描述生成相应内容。 游戏开发和互动体验,创建游戏角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询,理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询,帮助解读法律文件,提供合规建议。 4. 法律领域: 信息检索与整理,能迅速从大量数据中检索相关信息,提取和整理案件相关资料。 模式识别与预测,通过导入历史数据和参考信息,设定指令,预测案件可能结果,辅助制定诉讼策略。 自动化文档处理,自动生成和修改标准化文本与合同,减少律师文档起草和修订工作量。 多任务处理能力,同时处理多个任务,提高效率。
2025-02-11
擅长文字处理,主要是小说的AI有哪些,推荐一下
以下是一些擅长文字处理,尤其是小说创作的 AI 工具: 1. Novel.ai:AI 写小说领域的头部应用,是典型的 LLM 产品。其产品功能复杂但使用模式简单,包括利用续写能力将写作改造成交互式文本生成,渐进式生成小段并允许用户更改或继续生成,基于写作业务抽象出模型风格、写作方式、故事世界、记忆等细分功能。本质上还是构造 Prompt,交互式、渐进式的 Prompt 构建降低了使用门槛。 2. Character.ai:大名鼎鼎的角色扮演类 AI 陪伴产品,服务游戏和二次元用户。使用简单,选角色对话即可,创建也容易,角色的核心差异靠不同的详细描述,开放用户角色 Prompt 可见。 3. 筑梦岛:国内同类产品,玩法多样。和角色聊天、捏角色是共同主题,捏角色的产品化本质是收集信息产生高质量角色 Prompt 的过程,基于聊天模式有很多微创新的衍生玩法。 此外,还有一些中文的内容仿写 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,如心得体会、公文、演讲稿、小说、论文等,支持一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,是智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别)
2025-02-07
哪种AI更擅长数学模型搭建与计算
以下几种 AI 在数学模型搭建与计算方面表现较为出色: 1. Llama 3.1:是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡。 2. AlphaGeometry:在奥林匹克级几何问题基准测试中表现出色,解决了 30 题中的 25 题,接近人类国际数学奥林匹克金牌得主的表现。 3. 由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的中国模型:在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色,且中国模型更能优先考虑计算效率。 4. MathGLM 系列模型: MathGLM2B:在训练数据充足的情况下,能够准确地执行多位算术运算,准确率几乎可以达到 100%,结果显著超越 GPT4。 MathGLMLarge:采用不同变体作为骨干来训练,赋予其基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。 大型语言模型处理数学计算的一些解决办法包括: 1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理。 2. 教会模型数学法则:教导语言模型数学计算的规则。 3. 标准化自然数加法计算 prompt 模板:创建标准模板,使语言模型按预定义规则和步骤执行加法计算。 4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。 5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,让模型从中学习并改进数学计算能力。
2024-12-10
请画出一张图,显示主流大语言 模型擅长领域
以下是主流大语言模型擅长领域的相关信息: 1. Encoderonly 模型:通常适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. Encoderdecoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 3. Decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多 AI 助手基本采用此结构,包括 ChatGPT。 大模型的特点: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,先进的大模型一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 国内大模型分类: 1. 通用模型:如文心一言、讯飞星火等,处理自然语言。 2. 垂直模型:专注特定领域,如小语种交流、临床医学、AI 蛋白质结构预测等。 大型模型主要分类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同: 1. 处理的信息类型不同:大型语言模型专注于文本信息,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型可应用于更广泛领域,如图像识别与描述、视频分析、语音识别与生成等。 3. 数据需求不同:大型语言模型主要依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 相对大型模型的“小模型”:是在相对比较下规模较小的模型,实际是被设计来完成特定任务的,如最初用于图像分类的模型,只能分辨是或不是某一个东西。
2024-12-08
你是一位擅长儿童学习编程的老师,如果结合AI一起帮助儿童学习,有什么方法能介绍一下吗?
以下是结合 AI 帮助儿童学习编程的一些方法: 1. 先让儿童通过手动编写代码来学习编程基础知识,熟练掌握语言后,再将 AI 生成的代码作为节省时间的工具。 2. 利用自适应学习平台,如结合了 AI 技术的编程学习平台,为儿童量身定制学习计划,提供个性化的学习内容和练习。 3. 借助智能导师和对话机器人,让儿童与它们进行编程相关的交流和问题探讨,提高编程思维和解决问题的能力。 需要注意的是,在使用 AI 辅助学习的过程中,要确保儿童真正理解和掌握编程的原理和知识,而不是过度依赖 AI 完成学习任务。
2024-11-28
哪个AI比较擅长医学相关领域?
以下是一些在医学相关领域表现出色的 AI: 1. AlphaFold:由 DeepMind 开发,在蛋白质结构预测方面表现出色,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。 2. ESMFold(Meta 的蛋白质结构预测 AI 模型):截至目前已经进行了 7 亿次预测。 3. 多伦多大学研究人员开发的新 AI 系统:利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质。 4. 华盛顿大学 David Baker 教授团队开发的 RF Diffusion:基于 DALLE 的人工智能系统,用于根据科学家的需求生成合适的蛋白质结构。 5. 洛桑联邦理工学院科学家们开发的 PeSTo:基于神经网络的新工具,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。 6. Surrey 大学开发的人工智能系统:用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 此外,ChatGPT、Google Bard 等技术在日常工作生活中很有用,也极大加速了医疗健康生物制药的研究,AI 已经在抗癌、抗衰老、早期疾病防治(如提前三年诊断胰腺癌、帮助早期诊断帕金森等)、寻找阿尔兹海默症的治疗方法等方面起着重要作用。例如: 1. 两名高中生与医疗技术公司 Insilico Medicine 及其人工智能平台 PandaOmics 合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要。 2. 由 Integrated Biosciences 领导的一项最新研究通过使用人工智能筛查了超过 800,000 种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质。 3. 亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。 相关文献参考: 1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm 2. https://www.wevolver.com/article/pestoanewaitoolforpredictingproteininteractions 3. https://www.sciencedirect.com/science/article/pii/S0958166923000514 4. https://hms.harvard.edu/news/aipredictsfuturepancreaticcancer 5. https://finance.yahoo.com/news/teenagegeniusesaiuncovercancer163541619.html 6. https://www.earth.com/news/artificialintelligenceidentifiesnewantiagingcompounds/ 7. https://medicalxpress.com/news/202305scientistsaidrugalzheimer.html
2024-11-17
我是一个前端,我想要从0开始学习AI,应该怎么样去切入比较好
如果您作为一名前端想要从 0 开始学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 首先,记住“生成”两个字,随便找一个国产 AI 进行交流,比如聊小学奥数题、写演讲稿、探讨 996 等话题,看看 AI 擅长和不擅长的方面,留下 1 2 个更顺手的增加使用深度。条件允许的话,也可以直接使用 ChatGPT 或者 Claude 来处理复杂任务。
2025-02-18
我想要AI文案生成视频
以下是关于 AI 文案生成视频的相关信息: 在视频工作流中,前期策划和后期制作是核心环节,都可以借助 AIGC 提升效率。前期可利用 ChatGPT 生成文案,后期利用 AI 工具进行自动化视频制作。目前,倒入文案一键自动化生成视频可能尚未达到直接使用的程度,很多素材仍需人工替换,但在短视频账号建立初期,用于批量生产以快速低成本测试某一垂直领域短视频关键词热门情况较为合适。未来视频制作的整体趋势会更轻量更高效。 具体步骤如下: 1. 生产视频脚本:把选题告诉 ChatGPT,它能在数十秒内生成完整的视频脚本,包括具体场景和转场画面。利用 GPT4 生成的脚本虽在创意上有待提升,但对非专业人士入手视频创作有一定帮助。 2. 筛选 BGM:告诉 ChatGPT 视频的情绪,它能在海量背景音乐中为您筛选,节省时间。期待未来能与音源网站结合,实现同步预览,提升体验。 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看: 另外,在 Adobe 的的 Advanced 部分,您可以使用 Seed 选项添加种子编号,控制 AI 创建内容的随机性。相同的种子、提示和控制设置可重新生成类似的视频剪辑,然后选择 Generate 进行生成。
2025-02-16
我想要一份前10耗用的AI工具总结或介绍的PPT或链接
以下为您提供一些关于 AI 工具的总结和介绍: 1. 在通往 AGI 之路知识库中: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 2. ShowMeAI 周刊 No.10 中: Brev.AI:能生成更好听的中文歌。 妙刷:突如其来的「出圈」与莫名其妙地「被骂」。 当我们一起围观 Cursor 限时编程项目(的大型翻车现场)hhh。 网传「国产 AI 产品 Q3 投放金额统计」:不是真的!没这么多! 把大模型输出的数据搞成 Excel 表格,一共有几种方法? 完成「得到 AI 产品好用榜」发布会 PPT,一共用到了以下几款 AI 工具: 沉浸式翻译 可灵 AI 办公小浣熊 秘塔 AI 搜索 通义效率助手 Kimi 九章随时问 智谱清言 Get 笔记 ModelJudge:快速测评多个 AI 模型的回答结果,并帮助做出选择。 关于大模型、复杂剧情、内容创作、AI 陪伴的一些想法@AI 投什么。 妙用 AI:把照片里的 PPT「提取」出来的小技巧。 您可以通过以下途径获取更详细的信息:公众号菜单栏底部有星球入口,添加南乔(AhaNanQiao)好友进社群!
2025-02-13
我想要做一首歌,请给我推荐免费的AI大模型
以下为您推荐一些免费的 AI 大模型及获取方式: 1. 国内: 阿里的通义千问大模型接口:您可以打开链接创建 API key。 智谱 AI(ChatGLM)、科大讯飞(SparkDesk)也有免费接口,但国内的大模型大多限制一定免费额度的 Token。 2. 国外: 谷歌的 Gemini 大模型(gemini 1.5)。 海外版 Coze 的 GPT4 模型,此模型免费且能图片识别,但需要给服务器挂梯子。想使用的话,推荐参考张梦飞同学写的教程:,里面有手把手教您如何给服务器科学上网以及如何使用海外版 coze。 另外,为了帮助您更好地理解 AI 大模型的相关知识,以下是一些概念和原理的介绍: 1. 生成式 AI 生成的内容叫做 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习使用的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-11
我想要学习coze等智能体 你可以给我推荐高质量的免费课程吗
以下是为您推荐的学习 Coze 智能体的高质量免费课程: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库: 大聪明:保姆级教程:Coze 打工你躺平: 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验: YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏: 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 【智能体搭建共学课】一步步教你玩转 Coze 智能体,新手 0 门槛教学特邀讲师:元子:[https://www.bilibili.com/video/BV1mXqGY1EwJ/?spm_id_from=333.999.0.0&vd_source=84aaf5d504fda49d36287bb4930a47a2)(1 小时 32 分开始)
2025-02-08
想要对deepseek进行提问需要什么技巧吗?有没有什么高校组织给出的方案?
对 DeepSeek 进行提问时,以下是一些技巧: 1. 身份定位技巧:目的是让 AI 理解您的背景和专业水平。例如,差的表述是“帮我写一篇营销方案”,好的表述是“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧:提供具体的应用场景和限制条件。比如,差的表述是“写一篇新品发布文案”,好的表述是“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧:指定具体的输出格式和内容结构。例如,差的表述是“分析最近的新能源汽车销量数据”,好的表述是“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧:将复杂问题拆解为可管理的小任务。比如,差的表述是“怎么做短视频运营?”,好的表述是“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧:通过追问获得更精准的答案。例如,第一轮“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”追问 2:“可以增加一些具体的用户案例来支撑观点吗?” 6. 深度思考引导技巧:目的是获得更深入的分析和见解。
2025-02-07