直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?

回答

不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。

大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法:

  1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。
  2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。
  3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。
  4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。
  5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。

在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。

此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

不同大模型的能力大小有差,打一个比方,就像小学生和大学生的区别,你不可能让一个小学生去做高等数学的习题。如果你编写了一个AI项目,但是大模型执行出来的结果并不如意,你反复去调试提示词,都没有明显改善,你可以尝试换一个大模型试试。就像上面提到的“英语口语提升教练”案例,如果换其他模型,结果一下就出来了,不需要怎么去调试。所以,实在不行,就换模型。如果你是一名AI应用开发者,使用的是api,考虑到成本的问题,那么你应该考虑在工作流(Workflow)设计中,不同任务节点使用不同的大模型。基础性的工作节点,使用免费或者便宜的大模型,像我们上面提到的“意图判断器”就可以采用较低等级的大模型,还有像普通的内容总结类工作,也可以采用较低等级的大模型。而那些高价值性的工作节点,则以性能优先为考虑要素,优先选择对应性能最好的大模型。

问:大模型对于数学计算的一些解决办法

大型语言模型在处理数学计算时,尤其是复杂的数学问题时,可能会遇到一些困难。以下是一些解决办法,以帮助大型语言模型更好地处理数学计算:1.引入编程插件:一种解决方案是将数学问题转化为编程问题,并引入编程插件来处理。通过编写代码来执行数学计算,然后将结果返回给语言模型,以获取正确答案。2.教会模型数学法则:类似于小学生学习加法法则的方式,可以教导语言模型数学计算的规则。通过定义数学计算的规则和步骤,让语言模型学习如何正确执行数学运算。3.标准化自然数加法计算prompt模板:创建一个标准的自然数加法计算prompt模板,使语言模型能够按照预定义的规则和步骤来执行加法计算。这种方法可以帮助模型更好地理解和解决数学问题。4.结合图像模型:对于涉及空间概念的数学问题,可以结合图像模型来辅助处理。图像模型可以帮助模型更好地理解几何问题,并提供更准确的答案。5.提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,让模型能够从中学习并改进数学计算能力。通过更多的训练和数据,模型可以提高对数学问题的理解和处理能力。通过以上方法,大型语言模型可以更好地处理数学计算,并提供更准确的答案。这些方法可以帮助克服语言模型在数学问题上的一些局限性,提高其数学计算能力。内容由AI大模型生成,请仔细甄别

如何调教 AI,提示词,就应该和打字一样简单!

“AI时代我们都翻身农奴当老板,拥有数字员工后的我们,了解这些员工的秉性,成为新时代的超级个体。”[heading1]01[heading1]—[heading1]是否需要提示词工程,是否需要学提示词?[content]我是持反对观点的,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。[heading1]02[heading1]—[heading1]和大模型交互需要遵循规则吗?[content]不需要。网上流传最广的提示词方法论,是“你需要给大模型一个角色”。这确实是一个好的策略,因为小学老师,大学老师这样的角色,预设很多背景信息。这是一个非常讨巧的方式。但我并不认为这是一条必须要遵循的原则,甚至所有的规则都不是必须遵守的。你可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了你的目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。[heading1]03[heading1]—[heading1]用Markdown格式清晰表达问题[content]Markdown通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。1.结构清晰:Markdown通过简单的标记语法提供了丰富的格式化选项,如列表、标题、加粗、斜体、链接等。这使得信息呈现出清晰的结构,有助于模型更好地理解问题的重点和结构。2.格式化强调:Markdown允许用户通过格式化来强调问题中的关键部分,如使用加粗来突出重点或使用列表来组织多个问题或信息点。强调有助于模型识别和优先考虑文本的关键部分,从而提高回答的相关性和准确性。3.适用性广:由于Markdown在技术和非技术领域的广泛应用,使用这种格式交流可以确保信息的有效传达。普适性强。[heading1]04

其他人在问
目前能力最强的AI是什么?
目前能力最强的 AI 是 GPT4。GPT4 是功能最强的人工智能写作工具,您可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来使用。Claude 也是表现出色的 AI,紧随其后,并且提供了有限的免费选项。这些工具还被直接集成到常见的办公应用程序中,例如 Microsoft Office 将包括一个由 GPT 提供支持的副驾驶,Google Docs 将整合 Bard 的建议。
2024-11-12
AI画卡通画,有什么平台
以下是一些可以用于 AI 画卡通画的平台: MewXAI:这是一款强大专业且新手友好、操作简单的 AI 绘画创作平台。其功能包括 MX 绘画、MX Cute、MJ 绘画、边缘检测、室内设计、姿态检测、AI 艺术二维码、AI 艺术字等。访问地址:https://www.mewxai.cn/ Lucidchart:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图,如流程图、思维导图、网络拓扑图等。拖放界面易于使用,支持团队协作和实时编辑,有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可帮助自动化布局和优化图表设计,集成 Office 365,方便与其他 Office 应用程序协同工作,有丰富的图表类型和模板,支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware Diagrams.net:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox),有多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/
2024-11-12
现在有哪些AI陪伴类型的产品?
以下是一些 AI 陪伴类型的产品: 1. Character.ai:用户可以与数百个 AI 驱动的角色进行交流,还能创建自己的角色并赋予其各种特性。 2. Replika:用户可以设计理想的伴侣,其会存储记忆并在未来对话中参考,甚至能发送照片。 3. Talkie:主打情感路线,有大量 NPC 和丰富的剧情体系,游戏和休闲娱乐体验感强。 4. 星野、BubblePal:在长短记忆上做处理,突出陪伴意义,陪伴时间越久,知识库沉淀的个性化记录越丰富,越懂用户。 但每个产品都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的产品。
2024-11-12
AI 在教育行业的落地场景有哪些?
AI 在教育行业的落地场景主要包括以下方面: 1. 个性化学习:通过集成算法和大数据分析,如 Knewton 平台,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题,如 Pearson 的 Intelligent Essay Assessor,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学:例如 Google 的 AI 教育工具 AutoML 用于创建定制学习内容,通过有趣方式加深学生对学科概念的理解。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室进行实验操作并获得 AI 系统反馈,如 Labster 的虚拟实验室平台。 5. 协助评估学生学习情况,为职业规划提供建议。 6. 针对学生情况和兴趣定制学习内容。 7. 论文初稿搭建及论文审核。 8. 帮助低收入国家/家庭获得平等教育资源。
2024-11-12
ai生成图片
以下是关于如何判断一张图片是否为 AI 生成的相关内容: 首先,要培养鉴别 AI 生成图片的技能,需要训练自己的大脑模型。对于不善于此的朋友,可以借助一些网站,如 ILLUMINARTY(https://app.illuminarty.ai/),通过对大量图片数据的抓取和分析来给出画作属性的判断可能性。但在测试中可能存在问题,比如结构严谨的真实摄影作品可能会被误判为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 此外,还可以通过画面风格、物品 bug 等细节来辨别。就在我们总结这些方法的同时,AI 也在飞速修正作图 bug,所以这些方法可能随时失效。 我们曾在小红书、B 站等自媒体平台上以“ AIGC 鉴别”为话题发布图文,让大家判别真迹与 AI 仿品。在这个过程中发现,大家对判断哪幅图是 AI 生成的往往有一种直觉感受,但进一步询问如何看出时,多半难以迅速给出一套章程来描述或解释。所以我们系统地总结了“AIGC 鉴别”经验帖,帮助大家学会如何一眼盯真,两眼打假。
2024-11-12
AI编程调查报告
很抱歉,目前知识库中没有关于 AI 编程调查报告的相关内容。但一般来说,一份完整的 AI 编程调查报告可能会包含以下几个方面: 1. 引言:介绍调查的背景、目的和范围。 2. AI 编程的现状:包括当前主流的编程语言、框架和工具,以及它们的应用领域和发展趋势。 3. 技术挑战与解决方案:分析在 AI 编程中遇到的技术难题,如数据处理、模型训练、优化算法等,并探讨相应的解决办法。 4. 人才需求与培养:研究市场对 AI 编程人才的需求情况,以及相关的教育和培训资源。 5. 案例分析:列举一些成功的 AI 编程项目案例,展示其技术实现和应用效果。 6. 未来展望:对 AI 编程的未来发展方向进行预测和展望。 您可以根据具体的调查重点和需求,进一步明确和细化报告的内容。
2024-11-12
如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?
在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势: 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。 需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告: 。但报告内容由 AI 大模型生成,请仔细甄别。
2024-11-09
AI在高等数学中的应用
AI 在高等数学中的应用主要体现在以下几个方面: 1. 自适应学习系统:如 Khan Academy 结合 AI 技术,能为您提供个性化的数学学习路径和练习题,根据您的能力和需求精准推荐。 2. 智能题库和作业辅助:像 Photomath 这类工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:例如 Socratic 利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行高等数学学习,并取得更好的学习效果。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-12
我想要翻译最准确的教学领域的AI
以下是关于生成式人工智能在教学领域应用的相关内容: 生成式人工智能在教学中的应用包括: 央馆数 20 万长上下文联网总结。 如 Perplexity 这类付费且高质量的工具。 教师根据不同教学场景设计恰当提示词,用其辅助教学,例如宝⽟ XP 的翻译提示词不断迭代。 常见的应用有 AI 搜索总结、AI 思维导图、AI PPT 制作、AI 论文润色、AI 专业翻译、AI 摘要重点、AI 会议纪要、AI 公文撰写等。 可以收集整理语料,将蓝色字体替换成不同语种和场景。 教学应用举例:收集整理语料。 自适应学习、智慧课程清华的探索、AI 助教帮助精准回答学生问题。 涉及不同时代的教育特点,如口传时代传授生存技能传承部落文化,通过口诀、歌谣、神话故事等在生活场景和部落仪式中口耳相传、言传身教;手抄时代掌握典籍知识培养识字写字能力;印刷时代的启蒙教育、专业教育等;电子媒体时代的多学科知识实用技能等。 不同时代的教育组织形态和教学方式也有所不同,如私塾、官学、书院等,以及背诵领会、注疏评点等方式。
2024-11-11
我希望用即梦来生成一张图片,我想要实现的效果是:空中有悬浮的大理石加金子材质的悬浮台。请协助我生成提示词
以下是为您生成的使用即梦生成空中悬浮的大理石加金子材质悬浮台图片的提示词相关步骤: 1. 工具选择:即梦、可灵、Runway、Suno、剪映。 即梦:是最简单易用的图片重绘工具,云端访问且无需付费。 可灵:具有极强的运动笔刷控制力。 Runway:能很好地实现泼墨和画面上色。 Suno:可尝试新的使用视频制作歌曲的效果。 2. 即梦使用步骤: 使用即梦的图片生成功能,上传同一张图片 2 次,一次选择边缘轮廓,一次选择人物姿势(或者单独使用边缘轮廓也可以)。 在此场景下,不要添加景深,否则会出现“文物感”效果,而非所需的写实风。 可稍微提升精细度,由于原图是竖版,选择竖版切割,所得图片更适合用作首尾帧。 3. Runway 提示词:Static shot:colorful paint splashed onto canvas,transforming into a vibrant,lifelike display 4. 可灵提示词:一个帅气地老头从鹿背上跳下来,释放法术,漂浮在空中,非常自信,非常帅气。鹿向左走出了画面(鹿没有走出画面,但漂浮效果不错,决定不再抽卡,保留这个版本)。 希望这些信息对您有所帮助。
2024-11-10
我想从互联网上搜集某些类型的论文,并且自动整理成我想要的格式,有什么基于大模型的agent或者软件推荐吗
以下是一些基于大模型的 agent 或者软件,可帮助您从互联网上搜集某些类型的论文并自动整理成您想要的格式: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,可高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,在 AI 文章排版方面,以下工具可供选择: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. LaTeX:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 LaTeX 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,LaTeX 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-09
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
想要建一個AI資料庫
以下是关于建立 AI 数据库的相关信息: 我们是一个公益开源社区,坚信人工智能能重塑思考和学习方式,创建这个知识库的初衷是此。在搭建过程中收获颇丰,特别感谢支持和推荐的伙伴。 对于知识库,一系列信息和知识聚集即可构成。比如飞书软件搭建的“通往 AGI 之路”就是一个 AI 知识库,在 AGI 的飞书大群中跟机器人对话能获取资料。 关于建设人工智能项目: 机器学习项目工作流程:收集数据、训练模型(不断优化)、派送模型(测试并更新)。 数据科学项目工作流程:收集数据、分析数据(多次迭代获得正确见解)、提出假设与行动(调整并分析新数据)。 选择人工智能项目:找到 AI 可完成且商业领域能运用的项目,召集专业与业务领域专家团队。思考可自动化任务而非岗位,思考驱动商业价值的核心和商业领域的主要痛点。破除数据迷信,考虑项目的技术和商业方面,如确定系统表现、所需数据量和开发时间等,评估降低成本、增加收入等情况,考虑购买还是建造。 与人工智能团队合作:为项目提供验收标准,如检测废品成功率 95%,准备测试数据集。验收标准难以 100%正确,因数据少、技术不成熟等原因。
2024-11-07
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
国内文生图大模型,有哪些?
以下是一些国内的文生图大模型: 百度的文心一言:https://wenxin.baidu.com 抖音的云雀大模型:https://www.doubao.com 智谱 AI 的 GLM 大模型:https://chatglm.cn 中科院的紫东太初大模型:https://xihe.mindspore.cn 百川智能的百川大模型:https://www.baichuanai.com/ 商汤的日日新大模型:https://www.sensetime.com/ MiniMax 的 ABAB 大模型:https://api.minimax.chat 上海人工智能实验室的书生通用大模型:https://internai.org.cn 此外,真人效果卓绝的大模型 lofi.v2 也可用于生成真实场景下的字体。在使用 SDXL 大模型时,其分为 base+refiner 以及配套的 VAE 模型,base 用于文生图操作,refiner 用于细化生成的模型,VAE 用于调节图片效果和色彩。要在 webUI 中使用,需将秋叶启动器中 webUI 的版本升级到 1.5 以上,并将模型放入对应文件夹。
2024-11-12
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
可以调用不同大预言模型的整合工具推荐
以下是为您推荐的可以调用不同大语言模型的整合工具: 1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。访问地址: 。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可以尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 2. 国内的一些模型,如智谱和文心,在文生图方面有一定能力。 另外,大模型工具可根据自身条件准备,推荐顺序为:1. chatGPT 4.0 2. kimichat 3. 智谱清言 4 。
2024-11-12
国内外大预言模型对比
以下是国内外大语言模型的对比情况: 1. 工具使用能力: 在工具使用的测评中,GPT4 Turbo 取得满分。 国内大模型中智谱清言表现不俗,取得 83.78 的高分,排名国内第一。文心一言 4.0、通义千问 2.0、Yi34BChat、AndesGPT 均有超过 70 分的表现。超过 GPT3.5 的国内模型有 12 个。 开源模型中,Baichuan213BChat、Xverse13B2Caht 表现可圈可点,均超过 GPT3.5 以及众多闭源模型。总体来看,国内大模型在工具使用能力上表现优异,这与国内大模型厂商积极落地应用密不可分。 2. 主观和客观对比: 通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定。 GPT4 Turbo 的表现最为稳定。 客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。 在本次测评中,国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。 3. 总体表现: GPT 4 Turbo 总分 90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0有 4.9 分的差距。 过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat、阿里云的 Qwen72B、Yi 34BCha t 均优于 Llama213BChat。
2024-11-12
利用gpt-4模型的AI工具有哪些
以下是一些利用 GPT4 模型的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 GPT4 语言模型自动生成简历,能为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的各个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 此外,在生成式人工智能领域,GPT4 有以下突破点: 1. 赋予模型使用工具的能力,如 OpenAI 推出的 ChatGPT 插件测试版,允许与多种工具交互。 2. 在计划和解决问题方面具有一定能力,能通过玩游戏或模拟环境快速学习和从经验中学习。 3. 在许多任务上达到人类水平的表现,对人类的理解有所提升。 4. 但也存在一些限制,如架构中的自回归特性导致缺乏规划能力等。
2024-11-12