Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果我想要让AI回答高等数学相关的问题,适合用哪个大模型?

Answer

不同的大模型在处理高等数学相关问题时的能力有所差异。如果您编写的 AI 项目在处理高等数学问题时结果不如意,反复调试提示词也无明显改善,可以尝试更换大模型。

大型语言模型在处理数学计算,尤其是复杂的数学问题时可能会遇到困难,以下是一些解决办法:

  1. 引入编程插件:将数学问题转化为编程问题,并引入编程插件来处理,通过编写代码执行数学计算后将结果返回给语言模型。
  2. 教会模型数学法则:像教导小学生学习加法法则一样,让语言模型学习数学计算的规则。
  3. 标准化自然数加法计算 prompt 模板:创建标准的自然数加法计算 prompt 模板,让模型按预定义规则和步骤执行加法计算。
  4. 结合图像模型:对于涉及空间概念的数学问题,结合图像模型辅助处理。
  5. 提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,以提高其数学计算能力。

在选择大模型时,如果您是 AI 应用开发者且使用 api,考虑到成本问题,应在工作流设计中,根据不同任务节点选择不同的大模型。基础性工作节点可使用免费或便宜的大模型,如普通的内容总结类工作;高价值性的工作节点则以性能优先,优先选择对应性能最好的大模型。

此外,在与大模型交互时,方法论不是关键,不断尝试和交互便是最佳方法。您可以在提示词里设定规则,也可临时更改,甚至无需遵循规则,重点是是否达成目的。使用 Markdown 格式清晰表达问题,有助于模型更好地理解您的意图,因其具有结构清晰、格式化强调和适用性广等优点。

Content generated by AI large model, please carefully verify (powered by aily)

References

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

不同大模型的能力大小有差,打一个比方,就像小学生和大学生的区别,你不可能让一个小学生去做高等数学的习题。如果你编写了一个AI项目,但是大模型执行出来的结果并不如意,你反复去调试提示词,都没有明显改善,你可以尝试换一个大模型试试。就像上面提到的“英语口语提升教练”案例,如果换其他模型,结果一下就出来了,不需要怎么去调试。所以,实在不行,就换模型。如果你是一名AI应用开发者,使用的是api,考虑到成本的问题,那么你应该考虑在工作流(Workflow)设计中,不同任务节点使用不同的大模型。基础性的工作节点,使用免费或者便宜的大模型,像我们上面提到的“意图判断器”就可以采用较低等级的大模型,还有像普通的内容总结类工作,也可以采用较低等级的大模型。而那些高价值性的工作节点,则以性能优先为考虑要素,优先选择对应性能最好的大模型。

问:大模型对于数学计算的一些解决办法

大型语言模型在处理数学计算时,尤其是复杂的数学问题时,可能会遇到一些困难。以下是一些解决办法,以帮助大型语言模型更好地处理数学计算:1.引入编程插件:一种解决方案是将数学问题转化为编程问题,并引入编程插件来处理。通过编写代码来执行数学计算,然后将结果返回给语言模型,以获取正确答案。2.教会模型数学法则:类似于小学生学习加法法则的方式,可以教导语言模型数学计算的规则。通过定义数学计算的规则和步骤,让语言模型学习如何正确执行数学运算。3.标准化自然数加法计算prompt模板:创建一个标准的自然数加法计算prompt模板,使语言模型能够按照预定义的规则和步骤来执行加法计算。这种方法可以帮助模型更好地理解和解决数学问题。4.结合图像模型:对于涉及空间概念的数学问题,可以结合图像模型来辅助处理。图像模型可以帮助模型更好地理解几何问题,并提供更准确的答案。5.提供充足的语料和样本:为语言模型提供充足的数学计算样本和语料,让模型能够从中学习并改进数学计算能力。通过更多的训练和数据,模型可以提高对数学问题的理解和处理能力。通过以上方法,大型语言模型可以更好地处理数学计算,并提供更准确的答案。这些方法可以帮助克服语言模型在数学问题上的一些局限性,提高其数学计算能力。内容由AI大模型生成,请仔细甄别

如何调教 AI,提示词,就应该和打字一样简单!

“AI时代我们都翻身农奴当老板,拥有数字员工后的我们,了解这些员工的秉性,成为新时代的超级个体。”[heading1]01[heading1]—[heading1]是否需要提示词工程,是否需要学提示词?[content]我是持反对观点的,像打字和写作一样。方法论不是关键,不断尝试和大模型交互,便是最佳方法。[heading1]02[heading1]—[heading1]和大模型交互需要遵循规则吗?[content]不需要。网上流传最广的提示词方法论,是“你需要给大模型一个角色”。这确实是一个好的策略,因为小学老师,大学老师这样的角色,预设很多背景信息。这是一个非常讨巧的方式。但我并不认为这是一条必须要遵循的原则,甚至所有的规则都不是必须遵守的。你可以在提示词里面设定规则,也可以聊着聊着临时更改规则,和大模型交互时完全不需要考虑规则。要考虑的就是是否达成了你的目的,如果没达成,那就锲而不舍的开一个新窗口,再尝试一下。如果还是不行,换个模型。[heading1]03[heading1]—[heading1]用Markdown格式清晰表达问题[content]Markdown通过其易读性、格式化的灵活性和信息的清晰结构,使得与大模型的交流更加高效和精确。有助于模型更好地理解用户的意图。1.结构清晰:Markdown通过简单的标记语法提供了丰富的格式化选项,如列表、标题、加粗、斜体、链接等。这使得信息呈现出清晰的结构,有助于模型更好地理解问题的重点和结构。2.格式化强调:Markdown允许用户通过格式化来强调问题中的关键部分,如使用加粗来突出重点或使用列表来组织多个问题或信息点。强调有助于模型识别和优先考虑文本的关键部分,从而提高回答的相关性和准确性。3.适用性广:由于Markdown在技术和非技术领域的广泛应用,使用这种格式交流可以确保信息的有效传达。普适性强。[heading1]04

Others are asking
如何快速掌握ai的使用
以下是快速掌握 AI 使用的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于小白快速掌握 Python 结合 AI 的方法: 1. 掌握最少必要知识,尽快开始并度过这个过程。 2. 参考:。 3. 结合 ChatGPT,不懂的都可以问,注意提示词。 另外,还有一份 20 分钟上手 Python + AI 的简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内,循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。
2025-02-06
AI教育
以下是关于 AI 教育的相关内容: 人们对 AI 时代教育的期待: 长期以来的应试教育存在诸多弊端,如题海战术、考试制度等,导致学生创造性和创新性思维相对较差,且可能让学生对学习丧失兴趣。虽然教育资源比过去充裕,但学生学习能力未明显提升。对于三四五六线城市的学生,选择相对较少。 学校在 AI 教育方面的探索: 北京市新英才学校的师生已行动起来,跨学科项目老师带学生用 AIGC 做学校地图桌游,英语老师借助 AIGC 备课授课,生物和信息科技老师合作带学生训练 AI 模型识别植物。学校领导层重视,给予老师很大自由空间,目前处于探索初级阶段,但有一定经验成果。 中学生学习 AI 的建议: 1. 从编程语言入手学习,如 Python、JavaScript 等,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等),以及在各领域的应用案例。 4. 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
2025-02-06
ai提示词
以下是关于 AI 提示词的相关内容: 在舞蹈音乐方面,有 108 个用于生成 AI 舞曲的提示词,例如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”。其中,Punchy 4/4 beats 指节奏感强的四四拍鼓点;Electro bass 指电子低音;Catchy synths 指易于记住的合成器旋律或音效;Pop vocals 指流行音乐风格的主唱;Bright pads 指明亮的和弦音效;Clubready mixes 指适合在夜店播放的混音;Energetic drops 指高潮部分。每个提示词精心制作,以有效地封装各种舞蹈音乐流派的具体特点和大气质量,同时确保适应不同的聆听环境。 对于 SD 新手入门的图文教程中的提示词部分,为您提供了以下相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-02-06
什么是ai
AI(Artificial Intelligence,人工智能)是一门令人兴奋的科学,它是指某种能够模仿人类思维、理解自然语言并输出自然语言的存在。 对于没有理工科背景的人来说,理解 AI 可能有一定难度,可将其视为一个黑箱,只需知道它能实现这些功能即可。AI 与传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种能一定程度理解人类文字的异类达成预设效果,且都需面对可能突破界限的情况。 从技术角度看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。对于明确步骤和顺序的任务,可编写程序让计算机完成,但像根据照片判断人的年龄这类无法明确编程步骤的任务,正是 AI 所关注的。 在概念上,GenAI(Generative AI,生成式 AI)是基于深度学习技术,利用机器学习算法从已有数据中学习并生成新数据或内容的 AI 应用。AIGC(AIGenerated Content)则指利用 GenAI 创建的内容,包括图像、视频、音频、文本和三维模型等。目前,AIGC 行业在国内主要受《网络安全法》《数据安全法》《个人信息保护法》以及相关管理规定的监管。
2025-02-06
作为一名中学教师,怎么通过Ai工具将教材内容生成教案和ppt
以下是为您提供的通过 AI 工具将教材内容生成教案和 PPT 的方法: 1. 使用 COZE 应用 访问地址:https://www.coze.cn/s/iDsBwYLF/ 首页说明:启动页面有相关介绍。 生成教案:进入设计教案页面,等待执行完成后即可获得教案,教案是其他功能的基础。 趣味课堂:根据课文内容设计课堂问答卡和教学活动,采用寓教于乐的方式激发孩子学习兴趣。 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作等。 教案 PPT:PPT 内容基于生成的教学大纲,可能需要手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会优化大纲,点击进去后选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 2. 参考教师使用 AI 小技巧 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 一些 PPT 生成工具(网站): https://wenku.baidu.com :百度文库,付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入。 http://Tome.app :AI 配图效果好。 剪映:图文成片,只需提供文案,自动配图配音。
2025-02-06
AI工具推荐
以下是为您推荐的不同类型的 AI 工具: 审核规划平面图的 AI 工具: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值高。 2. Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有探索,能根据输入自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,能将建筑全寿命周期内的信息集成管理。 内容仿写的 AI 工具: 1. 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的创作助手,能提升写作效率和创作体验。 文章排版的 AI 工具: 1. Grammarly:不仅能检查语法和拼写,还提供排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,能重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择工具时需根据具体需求,如文档类型、出版标准和个人偏好来决定。对于学术论文,Latex 和 Overleaf 较受欢迎;一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2025-02-06
能做高等数学的AI
以下是为您整理的关于能做高等数学的 AI 的相关信息: Pi 对于高等数学的表现不稳定,有时不回答,有时能回答但可能答错,状态飘忽不定。比如在做七八道高等数学入门水平的题时,存在这样的情况。 沃尔夫勒姆认为,人工智能在“流体动力学风格”的数学水平上可能提供代码帮助,但对于真正新的、不涉及太多“样板文件”的内容,帮助有限。数学家在做数学时似乎在更高水平上对“微观元数学”进行了“粗粒度”处理。
2024-11-13
如果我想要让AI回答高等数学相关的问题,请帮我推荐一下现在国内的哪个大模型更擅长?
在国内的大模型中,对于回答高等数学相关问题,以下几个大模型具有一定的优势: 通义千问(阿里):在翻译、电商、法律、推理、数学等方面表现较好。 讯飞星火(科大讯飞):在中小学教育学习、翻译等方面有一定能力。 需要注意的是,不同大模型的表现可能会因具体问题和使用场景而有所差异。您还可以参考第三方基准评测报告: 。但报告内容由 AI 大模型生成,请仔细甄别。
2024-11-09
AI在高等数学中的应用
AI 在高等数学中的应用主要体现在以下几个方面: 1. 自适应学习系统:如 Khan Academy 结合 AI 技术,能为您提供个性化的数学学习路径和练习题,根据您的能力和需求精准推荐。 2. 智能题库和作业辅助:像 Photomath 这类工具,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手:例如 Socratic 利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台:参与如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,您可以更高效、更个性化地进行高等数学学习,并取得更好的学习效果。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-12
我需要你给我生成一些提示词,我会给你我想的想法。《》以内的是想法。《我想写一篇影视解说的文案,写作的视角以我,第一人称的视角来写。想要风格偏幽默风趣一点,就像跟朋友在讲述一样,可以模仿鲁迅先生的手法。而且还想把影片的剧情内容写出来,从开篇到电影的结尾,如果有需要保留原片的地方,请把原片的画面场景以及时间段描述出来。要求这篇文案要附上我自己的内心独白,以此引人深思!请你深度思考后,在做答复!要求字数不少于5000字。》请问我该如何写提示词?请你整理好提示词后发给我
以下是为您生成的一些提示词,希望对您有所帮助: 影视解说文案提示词 1. 以第一人称幽默风趣的口吻,像与朋友讲述般,描绘影片从开篇到结尾的精彩剧情,融入自己的内心独白,模仿鲁迅先生的手法,展现独特的视角和深刻的思考。 2. 用轻松幽默的语言,以我的视角详述影片情节,穿插搞笑的评论和内心想法,借鉴鲁迅先生的讽刺技巧,使解说引人入胜。 3. 以亲切自然的叙述方式,如同与好友聊天,讲述影片故事,从开头至结束,结合鲁迅先生的文风,加入个人的情感起伏和独特见解。 DALL·E 相关提示词 1. 绘画:提及颜料种类、画布纹理和笔触形状/纹理(列表)。 2. 数字:注明使用的软件、阴影技术和多媒体方法(列表)。 3. 基于详细提示使用 DALL·E 3 生成图像,让创意鲜活起来,为提示的每个元素做出大胆有趣的选择。 4. 遵循提示指南,提出四个全新的简单概念,而非完整提示,从上次给出的建议中获取灵感。 请注意,默认方面比率为正方形(1:1),默认风格为摄影,包括相机设置、摄影类型和设备。同时,避免违反服务条款的词汇或概念,不侵犯版权,不使用暗示性或露骨的图像,强调符合 G 级评级的元素。
2025-02-06
代码小白想要学习上手aiagent 请给我制定高效学习流程
以下是为代码小白制定的学习 AI Agent 的高效流程: 1. 基础了解 度过第一阶段,了解 AI 的基本原理和发展阶段。 2. 选择方向 鉴于您是代码小白,建议从不需要代码基础的 Coze 工作流学起。它适用所有人,只要能发现智能体的需求,就可以用工作流来实现。 3. 学习资源 可以参考《雪梅 May 的 AI 学习日记》,了解在业务运营领域如何通过 Coze 接触大量应用场景和进行 prompt 练习。 阅读安仔的文章,学习如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker 搭建一个 AI 微信聊天机器人,了解相关技术组件的选用、配置步骤、费用和运维问题。 查看元子的分享,如“小白的 Coze 之旅”,深入了解 Coze 平台。 4. 加入社群 可以加入免费的 AI Agent 共学群,基于 WaytoAGI 社区等高质量信息源,分享时下 AI Agent 相关的玩法、经验和前沿资讯。通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。 希望以上流程对您有所帮助,祝您学习顺利!
2025-02-05
我想要编程用哪个ai好?
以下是一些可以帮助您编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由全球最大的程序员社区和代码托管平台 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手。它支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,该代码生成器由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,该工具基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,该工具借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,该产品是基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 以上工具都可以帮助您提高编程效率,但是每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 对于更有经验的程序员来说,他们的关注点可能不仅限于代码的正确性,还包括整体代码质量。如的 Jeremy Howard 所解释的,关于 OpenAI Codex 模型的最新版本,“它编写冗长的代码,因为它生成的是平均水平的代码。对我来说,将平均水平的代码转化为我喜欢且知道是正确的代码,比从头开始编写它(至少在我熟悉的语言中)要慢得多。” 因此,虽然显然生成性编程是开发人员生产力的一个重要步骤,但目前还不清楚这种改进是否显著地不同于我们以前所看到的。生成式 AI 使程序员更优秀,但他们仍然必须编程。 简而言之,在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 都将日益流行起来。当我们考虑整个开发生态以及如何适配这种新的编程范式时,会发现很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为越来越明显:当我们某天要开发通用人工智能(AGI)时,一定是使用软件 2.0。
2025-02-05
当我想要解决一个问题,面对如此多的AI站点和AI智能体,我该如何选择?
在面对众多的 AI 站点和 AI 智能体时,您可以从以下几个方面进行选择: 1. 明确自身需求:确定您希望解决的具体问题和期望达到的目标,以便找到与之匹配的 AI 工具。 2. 了解功能特点:不同的 AI 智能体具有不同的功能和优势。例如,有些擅长自然语言处理和回答各种问题,有些则在特定领域如编程、设计等有出色表现。 3. 考虑技术能力:包括模型的性能、上下文窗口长度、响应速度和并发支持等。响应速度快、并发支持高的工具能在多人使用时保持良好性能。 4. 成本因素:关注免费或低价的选项,以降低使用成本。 5. 个性化需求满足:选择能够根据您的业务场景和个性化需求进行定制的 AI 智能体。 例如,字节的扣子(Coze)是新一代一站式 AI Bot 开发平台,无论有无编程基础都能构建各类问答 Bot,并可发布到多种社交平台和通讯软件上。而在开发 AI 插件时,像 AI Share Card 插件会根据需求选择合适的模型,如选用了具有较长上下文窗口、免费且并发支持高的 GLM4flash 模型。 总之,要综合考虑自身需求、功能特点、技术能力、成本和个性化等因素,选择最适合您的 AI 站点和智能体。
2025-02-04
我想要非法的copy网页的coding,你可以帮我马?
抱歉,您的需求是非法的,复制网页的编码可能会侵犯他人的知识产权和违反相关法律法规,因此我不能为您提供帮助。
2025-02-01
我想要能代替我直播的数字人工具
以下是一些能代替您直播的数字人工具相关信息: 数字人类型和应用场景: 1. 二维/三维虚拟人:用于游戏、IP 品牌(柳夜熙)、内容创作等。 2. 真人形象数字人:用于直播卖货、营销/投流广告视频录制(Heygen)、语言学习(CallAnnie)等。 数字人的价值: 1. 代替人说话,提升表达效率和营销效率,例如真人做不到 24 小时直播,但数字人可以。 2. 创造真实世界无法完成的对话或交流。 数字人面临的问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。比如抖音出台一些标准,而微信视频号容忍度更低,人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间,依赖大模型技术提升。 3. 需求限制:直播带货算个落地场景,但不刚。“懂得都懂”的刚需场景,国内搞不了。目前更多是体验新鲜感。 4. 伦理/法律限制:声音、影像版权等,比如换脸、数字永生等等。 数字人直播盈利方式: 1. 直接卖数字人工具软件。分实时驱动和非实时驱动两类,实时驱动在直播时能改音频话术,真人接管。市面价格在一年 4 6 万往上(标准零售价)。非实时一个月 600 元,效果很差,类似放视频的伪直播,市场价格混乱,靠发展代理割韭菜。 2. 提供数字人运营服务,按直播间成交额抽佣。 AI 直播卖货适用品类和场景: 1. 适用于不需要强展示的商品,如品牌食品饮料。如果服装就搞不了,过品快,衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路,调动直播间氛围能力等。 4. 电商直播分为达播跟店播,数字人直播跑下来效果最好的是店播,数据基本能保持跟真人一样(朋友公司数据)。 AI 直播的壁垒和未来市场格局: 1. 时间拉长,技术上没壁垒。但目前看仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高。比如更真实的对口型,更低的响应延迟等。 2. 不会一家独大,可能 4 5 家一线效果,大多二三线效果公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难打。 虚拟主播的驱动方式: 目前,虚拟数字人从技术驱动方式上可以分为两类,一种是“中之人”驱动,另一种是由 AI 驱动。 “中之人”通过动作捕捉和面部捕捉技术,实现虚拟人与现实的交互。动作捕捉技术可以提供一套全身动捕硬件设备,售价约为 29000 元,另需缴纳 800 元的软件年度服务费。如果只需要捕捉面部表情,价格则约为 6000 元左右。总的来说,“中之人”是虚拟人物的“皮囊”,而“中之人”才是其真正的灵魂。 AI 驱动是通过 AI 技术实现虚拟人的创建、驱动和内容生成的综合技术,使其具备感知、表达等交互能力。AI 驱动的虚拟人能够智能地读取并解析外部输入信息,并根据解析结果做出决策,然后驱动人物模型生成相应的语音和动作,从而与用户进行互动。这种“一站式”技术让虚拟数字人具备更加自然、智能、人性化的交互能力。
2025-01-31
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
模型测评
以下是关于模型测评的相关内容: Llama2 模型评测:为了解其中文问答能力,筛选了具有代表性的中文问题进行提问,测试了 Meta 公开的 Llama27BChat 和 Llama213BChat 两个版本,未做任何微调和训练。测试问题涵盖通用知识、语言理解等八个类别,使用特定 Prompt 进行测试,测试结果见相应文档。发现该模型对于中文问答的对齐效果一般,基于中文数据的训练和微调十分必要。 小七姐:文心一言 4.0、智谱清言、KimiChat 小样本测评:测评机制包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,能力考量涵盖复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,测评轮次包括复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力,每轮次均有不同的任务和模型测试次数。 斯坦福发布大模型排行榜 AlpacaEval:相对于人工标注,全自动化的 AlpacaEval 经济成本和时间成本低。从统计角度探讨了区分模型的评估数据,AlpacaEval 支持两种模式的模型评估方式,评测过程分为选择评估集并计算输出、计算 golden 输出、选择自动标注器并计算胜率三步。
2025-02-06
请用思维导图描述AI智能体大语言模型平台汇总图(带图标LOGO)
以下是为您生成的关于 AI 智能体大语言模型平台的汇总思维导图: 1. 基础层 为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层 静态的知识库 动态的三方数据集 3. 模型层 LLm(largelanguagemodel,大语言模型),例如 GPT,一般使用 transformer 算法来实现。 多模态模型,即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层 模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层(应用层) 用户实际看到的地方。 此外,在翻译场景中: 语言翻译技术经历了从传统规则翻译到深度学习翻译的逐步发展,每一次革新都显著提高了翻译的准确性和自然度。 传统机器翻译存在局限性,基于规则和统计模型,常常出现死板和字面化的结果,尤其在遇到多义词、习语或文化差异时,翻译往往不自然,且容易误导。 深度学习翻译技术通过大规模语料库学习,能够更好地理解上下文和语境,提供更加流畅、准确的翻译。 大模型翻译技术引入后,通过海量数据学习,能够精准捕捉语言的深层语义和文化背景,提供更符合语境的翻译,显著提升了翻译的准确性与流畅度。 在学术场景中: 大模型技术能够快速总结论文内容、进行精准翻译,节省研究者阅读和整理文献的时间。 文献预处理时,需将海量文献的格式转换为可供模型解析的文本格式,可借助平台工具完成文件内容的提取。 可将文件内容自动化提取并结合大语言模型进行批量分析或任务处理,适用于文档总结、信息提取等场景。
2025-02-06
大模型在软件开发公司(主java+vue)的应用场景有哪些
大模型在以 Java 和 Vue 技术为主的软件开发公司中,具有以下一些应用场景: 1. 代码自动生成:大模型可以根据需求描述生成 Java 或 Vue 的代码片段,提高开发效率。 2. 代码优化建议:分析现有代码,提供优化的建议和策略,提升代码质量。 3. 智能错误检测与修复:快速识别代码中的错误,并提供可能的修复方案。 4. 需求分析与理解:帮助更好地理解和梳理复杂的业务需求,转化为技术实现的思路。 5. 自动化测试用例生成:根据代码和需求生成有效的测试用例,提高测试效率和覆盖度。 6. 技术选型辅助:在面临新的项目或技术难题时,提供相关技术选型的参考和建议。
2025-02-06
以图生图有什么好用的模型
以下是一些好用的以图生图模型和相关产品: 1. Tusiart: 首页包含模型、帖子、排行榜,可查看不同模型的详细信息,如checkpoint、lora等。 checkpoint是生图必需的基础模型,lora是低阶自适应模型,可有可无,常用于控制细节。 还有ControlNet用于控制特定图像,VAE类似于滤镜可调整饱和度,以及Prompt提示词和负向提示词。 图生图功能可根据上传图片和所选模型等信息重绘。 2. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 3. Retrato:AI工具,可将图片转换为非凡肖像,有500多种风格选择,适合制作个性头像。 4. Stable Diffusion Reimagine:新型AI工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 5. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的AI工具,能将上传的照片转换为芭比风格。 需要注意的是,这些AI模型可能存在性能不稳定、生成内容不当等局限,使用时需仔细甄别。
2025-02-05
什么是AI大模型?
AI 大模型是一个复杂且涉及众多技术概念的领域。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-05