以下是一些常见的图片对话模型:
智谱·AI 开源的图片对话模型有:
智谱·AI 开源的 Chat 模型有:
ChatGLM:地址:[https://github.com/THUDM/ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持VisualGLM-6B地址:[https://github.com/THUDM/VisualGLM-6B](https://github.com/THUDM/VisualGLM-6B)简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于ChatGLM-6B,具有62亿参数;图像部分通过训练BLIP2-Qformer构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。依靠来自于CogView数据集的30M高质量中文图文对,与300M经过筛选的英文图文对进行预训练。Chinese-LLaMA-Alpaca:地址:[https://github.com/ymcui/Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)简介:中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署,在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练
��模态的模型。|模型|介绍|代码链接|模型下载|<br>|-|-|-|-|<br>|CogAgent-18B|基于CogVLM-17B改进的开源视觉语言模型。CogAgent-18B拥有110亿视觉参数和70亿语言参数,支持1120*1120分辨率的图像理解,在CogVLM功能的基础上,具备GUI图像的Agent能力。|[CogVLM & CogAgent](https://github.com/THUDM/CogVLM)|[Huggingface](https://huggingface.co/THUDM/CogVLM)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/cogagent-chat/summary)|[Swanhub](https://swanhub.co/ZhipuAI/cogagent-chat-hf)|始智社区|<br>|CogVLM-17B|强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM可以在不牺牲任何NLP任务性能的情况下,实现视觉语言特征的深度融合。我们训练的CogVLM-17B是目前多模态权威学术榜单上综合成绩第一的模型,在14个数据集上取得了state-of-the-art或者第二名的成绩。||[Huggingface](https://huggingface.co/THUDM/cogvlm-chat-hf)|[魔搭社区](https://modelscope.cn/models/AI-ModelScope/cogvlm-chat/summary)|<br>|Visualglm-6B|VisualGLM-6B是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于[ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B),具有62亿参数;图像部分通过训练[BLIP2-Qformer](https://arxiv.org/abs/2301.12597)构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。|[VisuaGLM](https://github.com/THUDM/VisualGLM-6B)|[Huggingface](https://huggingface.co/THUDM/visualglm-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/visualglm-6b/summary)|<br>|RDM|Relay Diffusion Model:级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。|[RDM](https://github.com/THUDM/RelayDiffusion)||
��语言模型列表|模型|介绍|上下文token数|代码链接|模型权重下载链接|<br>|-|-|-|-|-|<br>|ChatGLM-6B-int4|ChatGLM-6B的Int4版本。最低只需6GB显存即可部署,最低只需7GB显存即可启动微调([P-Tuning v2](https://github.com/THUDM/P-tuning-v2))|2K||[Huggingface](https://huggingface.co/THUDM/chatglm-6b-int4)|魔搭社区|始智社区|启智社区|<br>|ChatGLM-6B-int8|ChatGLM-6B的Int8版本|2K||[Huggingface](https://huggingface.co/THUDM/chatglm-6b-int8)|魔搭社区|始智社区|启智社区|<br>|AgentLM-7B|1.我们提出了一种AgentTuning的方法;2.我们开源了包含1866个高质量交互、6个多样化的真实场景任务的Agent数据集AgentInstruct3.基于上述方法和数据集,我们利用Llama2微调了具备超强Agent能力的AgentLM-7B、AgentLM-13B、AgentLM-70B。|4K|[AgentTuning](https://github.com/THUDM/AgentTuning)|[🤗Huggingface Repo](https://huggingface.co/THUDM/agentlm-7b)|<br>|AgentLM-13B||4K||[🤗Huggingface Repo](https://huggingface.co/THUDM/agentlm-13b)|<br>|AgentLM-70B||8K||[🤗Huggingface Repo](https://huggingface.co/THUDM/agentlm-70b)|