Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

提供“与知识库对话”的产品服务

Answer

以下是关于“与知识库对话”的产品服务相关内容:

如果想要对知识库进行更加灵活的掌控,需要使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。

AnythingLLM 中有 Workspace 的概念,可以创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。

在商业化问答场景中,以一个问答机器人界面为例,其左侧有三处配置:AI 模型、提示词、知识库。模型可以想象成学习过无数知识的人;提示词是告诉模型扮演的角色和专注的技能;知识库则相当于给模型发放的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。

Content generated by AI large model, please carefully verify (powered by aily)

References

手把手教你本地部署大模型以及搭建个人知识库

如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

前言在把AI大模型能力接入微信后,发现很多朋友想要落地在类似客服的应用场景。但目前大模型存在幻觉,一不留神就胡乱回答,这在严肃的商用场景下是不可接受的。当我想要解决此问题时,发现虽然资料很多,但是多数太偏“技术向”,对于很多和我一样的非技术从业者来说,犹如天书一般。有落地需求的朋友们,即使完成了通路搭建,也无法真正的应用。落地场景,幻觉是不得不直面的问题。而非技术从业者的小白们,很难找到一个“说人话”的文章,让他们完全了解并应用。而我对此比较感兴趣,同时作为产品经理,有一些用户思维和技术基础。因此我斗胆在整理、学习了多位前辈的成果后,写一篇讲给“小白”们的教程。⚡以下内容,如有错漏,欢迎留言补充、批评、指正。一、对话示例如果我直接讲理论部分,我相信小白强迫自己看了前200字就会关掉窗口。因此,我们先将这个过程具象化。以下是一个问答机器人的界面。这是一个示例,你可以把右侧的对话当做是微信的对话框,这些对话交互是可以在任何一个受支持的窗口下实现的。上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。左侧有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:

张梦飞 :AI商用级问答场景,怎么让AI+知识库回答的更准确?一篇专门为小白讲透RAG而作的教程(上篇)

以下是一个问答机器人的界面。这是一个示例,你可以把右侧的对话当做是微信的对话框,这些对话交互是可以在任何一个受支持的窗口下实现的。上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。问答机器人的配置这里有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库,相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。那我这里的设定:AI模型:这里使用的是阿里千问模型。提示词:这里设定的角色是“美嘉”,是按照美嘉的人设、背景和对话风格做的设定。知识库:这里放的是《爱情公寓》全季的剧情,让“美嘉”拥有了自己过往的“记忆”,知道自己做过什么、好朋友是谁等等。

Others are asking
知识库搭建
知识库搭建主要包括以下几个方面: 1. “拎得清、看得到、想得起、用得上”的核心步骤: 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎、加入优质社群和订阅号等建立信息通路,具备信息嗅探能力。 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 想得起:强调信息的内化和知识线索建立,做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时能从知识库中调取相应信息。 2. RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 RAG 是当需要依靠不包含在大模型训练集中的数据时的主要方法,首先检索外部数据,然后在生成步骤中将其传递给 LLM。 RAG 应用包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。 3. 智能体知识库创建: 手动清洗数据,提高数据准确性。 在线知识库:创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 发布应用:确保在 Bot 商店中能搜到。
2025-02-18
知识库搭建
知识库搭建主要包括以下几个方面: 1. “拎得清、看得到、想得起、用得上”的核心步骤: 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎、加入优质社群和订阅号等建立信息通路,具备信息嗅探能力。 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 想得起:强调信息的内化和知识线索建立,做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时能从知识库中调取相应信息。 2. RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 RAG 是当需要依靠不包含在大模型训练集中的数据时的主要方法,首先检索外部数据,然后在生成步骤中将其传递给 LLM。 RAG 应用包括文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。 3. 智能体知识库创建: 手动清洗数据,提高数据准确性。 在线知识库:创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 发布应用:确保在 Bot 商店中能搜到。
2025-02-18
知识库框架
以下是关于知识库框架的相关内容: 智能体的目标和框架: 智能体的交互能力:包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用(如引导用户输入车辆信息便于大模型理解和分析)以及上下文说明。 智能体的知识体量:涵盖豆包大模型本身的行业数据和语料库、知识库(包括结构化数据与非结构化数据),以及创建知识库的步骤和参赛用知识库,还涉及大模型 RAG 检索、大模型的选择和参数设定以及新模型的调用方法。 智能体的记忆能力:包含变量、数据库和信息记录。 知识: 外置知识是由外部数据库提供,能动态更新和调整。涉及多种数据存储和组织方式,如向量数据库(常用于处理和索引非结构化数据)、关系型数据库(适用于事务性数据存储)、知识图谱(适合复杂语义分析和知识推理)。在实际应用中,外置知识的集成和管理常采用 RAG 架构,能结合检索和生成,增强模型生成能力,实时检索和整合最新外部信息。 陈财猫团队的提示词相关知识库文章索引:
2025-02-18
对作为知识库的数据进行预处理,用哪个软件比较哈
以下是一些可用于对作为知识库的数据进行预处理的软件和方法: 1. LangchainchatGLM:对于知识库内容的组织要求较高,无需微调训练,适合有结构、界限分明的数据。可使用langchain库比对字典的关键词keys部分,找到相似度最高的相关keys对应的内容文本,送进提示词模板(prompt_template),然后送到LLM进行后处理。 2. 在检索原理方面,可通过嵌入模型(如Word2Vec、GloVe、BERT)将问题文本转化为向量,用于后续检索。例如,在商业化问答场景中,会对接收的问题进行预处理和向量化。 3. 在创建知识库并上传表格数据时,可通过API获取在线API的JSON数据上传,或手动自定义创建数据表结构和数据。需注意指定语义匹配字段,在响应用户查询时,将用户查询内容与该字段内容进行比较,根据相似度进行匹配。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
给我flux的提示词结构的知识库我以他作为知识库
以下是关于 Flux 提示词结构的相关知识: 大语言模型就像一个学过无数知识、拥有无穷智慧的人,但在工作场景中,需要通过提示词来设定其角色和专注的技能,使其成为满足需求的“员工”。知识库则相当于给“员工”发放的工作手册,提供特定的信息。 提示词可以设定 Bot 的身份及其目标和技能,例如产品问答助手、新闻播报员、翻译助理等,决定 Bot 与用户的互动方式。详情可参考。 学习提示词可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但舒适的学习顺序应反过来,先从场景切入,直接了解在不同场景下提示词的使用及效果对比;然后使用提示词工具,如 Meta Prompt、Al 角色定制等;接着学习有效的提示语句,包括经典论文中的相关语句;再学习有效的方法论,将有效语句及其背后的原理整合成稳定可控的方法;最后掌握思维框架。 此外,还可以通过插件、工作流、记忆库等功能定制 AI Bot。插件可通过 API 连接集成各种平台和服务扩展 Bot 能力,详情参考。
2025-02-16
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
通过飞书机器人与 Coze 搭建的智能体进行对话
通过飞书机器人与 Coze 搭建智能体进行对话,实现跨平台的稍后读收集与智能阅读计划推荐,具体步骤如下: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”(实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入)、自动化“整理入库”(自动整理每条内容的关键信息,支持跨平台查看)、智能“选择”推荐(根据收藏记录和阅读兴趣生成阅读计划)。 2. 逐步搭建 AI 智能体: 经过配置得到两个可用工作流(整理入库、选择内容),将其编排为完整智能体。 配置过程包括创建 Bot、填写 Bot 介绍、切换模型为“通义千问”、把工作流添加到 Bot 中、新增变量{{app_token}}、添加外层 bot 提示词,完成后可在「预览与调试」窗口与智能体对话并使用全部功能。
2025-02-16
豆包、DeepSeek、ChatGPT分别有些什么功能用于解决用户整理对话的需求
以下是豆包、DeepSeek、ChatGPT 在解决用户整理对话需求方面的功能: ChatGPT: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 2. 聊天机器人:作为聊天机器人的后端,提供自然的对话体验。 3. 问答系统:为用户提供准确的答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:在这方面有不错的表现。 6. 群聊总结:能够对群聊内容进行总结。 7. 代码生成:生成代码片段,帮助开发者解决编程问题。 8. 教育:帮助学生解答问题或提供学习材料。 9. 浏览器插件:如 webpilot 。 10. PDF 对话:通过相关网站实现与 PDF 的对话。 11. PPT 生成:协助高效制作 PPT 。 12. 音视频提取总结:通过特定网站进行总结。 13. 播客总结:通过特定网站完成总结。 14. 生成脑图:通过相关网站生成。 关于豆包和 DeepSeek 在解决用户整理对话需求方面的功能,上述内容中未提及。
2025-02-13
与deepseek高效对话的五个黄金法则
以下是与 Deepseek 高效对话的五个黄金法则: 1. 像教实习生:别指望它读心术,要给明确“操作手册”。 亮身份(就像相亲自我介绍):说清角色(新人/专家)、处境(紧急任务/长期规划)、特殊需求(老板的喜好/公司制度)。例如,错误示范是“帮我写个方案”,正确示范是“我是刚入职的行政专员,要给 50 人团队策划元旦团建,预算人均 200 元”。 派任务(像教小朋友做家务):明确要做什么、范围多大、重点在哪、要几个结果。例如,错误示范是“分析下市场”,正确示范是“请对比蜜雪冰城和茶百道最近 3 个月的新品策略,找出年轻人最爱的 3 个创新点”。 立规矩(像点菜提要求):包括时间限制、资源条件、雷区预警、特殊偏好。例如,请 AI 当健身教练,正确示范是“我是 996 上班族,每天最多锻炼 30 分钟,家里只有瑜伽垫,帮我制定减脂计划,不要深蹲伤膝盖”。 定格式(像下单选规格):根据需求选择文档类(PPT 页数、报告部分)、数据类(表格或图表)、创意类(小红书风格或知乎体)等格式。例如,做会议纪要,正确示范是“用表格呈现,左边列讨论主题,右边分决策事项/负责人/截止时间三栏,最后用红色标出待确认事项”。 2. 像拼乐高:复杂任务拆成小模块,逐个击破。 3. 像打乒乓球:有来有往多回合,好答案都是改出来的。 4. 下次和 AI 对话前,先花 30 秒填这个 checklist: 我说清自己身份了吗? 任务目标够具体吗? 特殊要求列全了吗? 要什么格式交代了吗? 留好修改的余地了吗? 5. 一个提示词,让 DeepSeek 的能力更上一层楼: 效果对比:用 Coze 做了个小测试,大家可以对比看看。 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 完整提示词。 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是项目最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 掌握这套方法,您会突然发现:原来 AI 这么听话!从此刻开始,告别无效对话,让您的每个问题都换来实实在在的干货。
2025-02-13
怎么与多个pdf进行对话
要与多个 PDF 进行对话,可以考虑使用以下方法和工具: 1. ChatDOC:这是一个 AI 文档阅读助手,能够在数秒内总结长文档、解释复杂概念和查找关键信息。它具有以下优势: 可靠性和准确性高,在所有 ChatPDF 类产品中居首。 精通表格理解,选择表格或文本可立即获取详细信息。 支持多文档对话,不受每个文档页数限制。 每个回答均可溯源至原文,有原文档中的直接引用支持。 支持多种文档类型,包括扫描件、ePub、HTML 和 docx 格式文档。 2. AskYourPDF Research Assistant:可以与多个文件聊天,生成带有引文的文章,分析和生成论文的参考文献,创建文件的知识库并与之交互等。 在进行互动式问答时,需要注意以下几点: 1. 对于更新的数据或最新出版的书籍、报告和文件,ChatGPT 的知识库可能无法提供答案。 2. 如果有现成的 PDF,建议通过 CHATDOC 网站进行互动式问答。 3. 提问时应遵循一定的模板,例如: 输入信息:向 ChatGPT 提供要查询的书籍、报告或文件的详细信息,包括书籍的书名、作者、出版日期、出版社,报告的时间、主题,文件的名称等,提供越详细越能获得准确答案。 提出问题:例如询问书籍中提到的某些方面、原则、方法,报告中行业的增长趋势,对报告或书籍的概括、主要观点等。
2025-02-11
什么工具能实现和多个pdf或word文档对话
以下工具可以实现和多个 PDF 或 Word 文档对话: 1. ChatDOC(海外官网:chatdoc.com):是一个 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息。在可靠性和准确性方面,它在所有 ChatPDF 类产品中居首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文,还支持多种文档类型,如扫描件、ePub、HTML 和 docx 格式文档。 2. IncarnaMind:是一个可以使用大型语言模型(如 GPT)与个人文档(PDF、TXT)进行聊天的工具。它通过滑动窗口分块机制和检索器,能高效查询细粒度和粗粒度信息,支持多文档查询和稳定的解析,还具有自适应分块、多文档对话问答、文件兼容性和模型兼容性等特点。
2025-02-11
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
可以用ai做商务服务么,比如帮用户申请个商标
AI 可以在一定程度上辅助商务服务,比如商标申请。商标申请要有区分度,能区分自家与别家产品,不像著作权需考虑独创性等。 关于 AI 作品的相关问题: 微链区块链存证流程: 登录方式:用微信扫码即可登录微链,登录后无需在个人中心完善信息。 存证选择:在页面左上角选择区块链存证,AI 作品一般选此选项。 信息填写:包括存证内容类型、存证附件、存证名称、作品作者、作品简介、著作权人等信息,著作权人可委托登记。 发表信息:填写发表地区、首次发表日期、权力取得方式等。 提交付款:确认存证上传,勾选并提交存证,手机扫码付款 10 元。 查看订单:在个人中心的版权订单中查看处理状态,处理完成后可在区块链版权存证处查看证书。 版权登记:带有 AI 性质或名字的作品无法做著作权登记,选择微链区块链存证有法律效应,且一次存证无需每年续费。 关于侵权问题: AI 生成肖像侵权:用他人著名肖像生成特定形象可能侵犯肖像权和名誉权,用自己肖像则相对安全。 AI 生成人脸相似侵权:若生成的人脸世界上不存在,侵权可能性小;若提示词相同且生成相似,可能侵权,需具体情况具体分析。 简单提示词作品版权:简单提示词生成的作品,法律可能不保护其版权,被搬运时难以有效维权。 以图生图的鉴定:若生成的图与原图看不出相同,一般不侵权,但用与原图无相似之处的图做底图的原因值得思考。 AI 生成音乐侵权:AI 音乐中歌词和旋律与某首歌有相似部分,是否侵权需多元素、多因素整体判断,如相似部分占比、整体结构等。 使用逝者肖像:逝者肖像权永远受保护,使用需谨慎,未造成不良影响且增益的情况下权利人可能不追究。
2025-02-17
Deepseek老是“服务器繁忙,请稍后再试”,没有办法提升,比如说把模型部署到本地等等
如果您遇到 DeepSeek 老是显示“服务器繁忙,请稍后再试”且无法提升的情况,可以尝试以下方法: 1. 使用网页聊天: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件并添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 2. 完成上述操作后,您就可以愉快玩耍,无需担心“服务器繁忙”了,打开联网功能,还可以支持联网搜索使用 R1。
2025-02-15
我是一名主要服务于企业的律师,怎样才能得到ai最大化的帮助
作为服务于企业的律师,要得到 AI 最大化的帮助,可以从以下几个方面入手: 律师的优势: 1. 具备深厚的法律专业知识,能提供专业的法律分析和建议。 2. 在沟通和谈判中能够与各方建立信任、表达观点、促成交易等。 3. 能够针对新兴行业或监管空白提出合规建议。 4. 作为专业人士,在危机应对时能在紧急情况下做出专业判断,提供及时的法律建议和解决方案。 律师的不足: 1. 处理大量信息和数据时人工效率有限,如大量文件调查中的数据提取和整理。 2. 处理细节方面可能难以记住各类案件中的所有事实和细节,尤其在复杂案件中。 3. 在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。 AI 的优势: 1. 信息检索与整理:能迅速从大量数据中检索相关信息,提取和整理案件相关资料。 2. 模式识别与预测:通过导入历史数据和参考信息,设定指令,可以预测案件的可能结果,辅助制定诉讼策略。 3. 自动化文档处理:能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。 4. 多任务处理能力:可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。 AI 的不足: 1. 法律解释与推理:难以像专业的法律人一样,推演复杂的法律解释和论证。特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时,能力非常有限。 2. 理解道德和情感:难以理解案件中涉及的复杂情感和动机。 3. 创新或个性化的服务:难以提供客户的综合性需求来提供个性化的法律服务,因为大模型是基于预设的数据和规则,不能及时采集到客户所有的即时信息,很难超出语料的内容生成创新且专业的答案,因此很难针对性地为客户提供专业服务。 律师与 AI 协同的关键在于:根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。例如,在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。给出类似“根据提供的模板,自动生成一份关于 XX 事项的合同草案,并标注出需要人工审核的关键条款”的 prompt。 同时,要认识到 AI 存在一定的“不稳定性”,不能期待设计一个完美的提示词就能得到完美答案,提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在与 AI 的对话中产生,并且在对话中限缩自己思维中的模糊地带。
2025-02-13
我做餐饮服务相关的投标文件,能用到哪些ai工具或平台能让我提高工作效率
以下是一些在制作餐饮服务投标文件时可能提高工作效率的 AI 工具和平台: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,声称可以帮助企业撰写更强的提案,提高中标率。能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。 2. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频。可用于制作营销视频、产品演示等。 3. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。适合制作营销视频和虚拟主持人等。 4. Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等。提供多种语气和风格选择,写作质量较高。 5. Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容。有免费和付费两种计划。 6. Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等。提供多种语气和行业定制选项。 您还可以查看 WaytoAGI 网站(https://www.waytoagi.com/sites?tag=8)获取更多相关信息。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-12
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
有什么帮助查找论文,提供论文引用文献和被引用文献的AI
以下是一些能够帮助查找论文、提供论文引用文献和被引用文献的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有以下相关的 AI 工具和网站: 1. TXYZ 网站: 帮助搜索、查询专业文献并进行对话的 AI 工具,提供一站式服务。 是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 用户可上传 PDF 论文或链接,迅速找到所需答案和内容,在对话中提供论文参考和可信背书。 2. 一些 GPTs 工具: Consensus:AI 研究助手,可搜索 2 亿篇学术论文,获取基于科学的答案并带有准确引用的内容草稿。 AskYourPDF Research Assistant:增强研究,可与多个文件聊天,生成带引文的文章,分析和生成论文参考文献等。 Best Custom GPTs:在一个地方搜索所有公开 GPT,找到适合需求的自定义 ChatGPT。 AutoExpert:自动组建动态专家团队,回答、辩论和探讨问题。 ResearchGPT:人工智能研究助手,帮助从大量文章中发现最新和相关论文,并提供引文支持的答案。 The Glibatree Art Designer:根据提示和要求生成艺术设计作品。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-10
介绍几款能对YOUTUBE视频实时同声传译的AI工具,并提供使用教程,适合新手小白学习使用
以下为您介绍几款能对 YouTube 视频实时同声传译的 AI 工具及使用教程: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 YouTube 视频的双语字幕,解决了 YouTube 自带字幕翻译点击路径长的问题。 插件安装地址:https://immersivetranslate.com/ 2. 微软 Stream 中的 Copilot: 可以帮助您理解视频内容,询问并跳转到对应时间点。 此外,Youtube 还更新了五款针对创作者的 AI 工具,虽然并非完全是实时同声传译工具,但也可能对您有所帮助: 1. Dream Screen:将 AI 生成的图像或视频背景添加到 YouTube Shorts 中。 2. YouTube Create:使用新的编辑和制作应用程序编辑手机中的视频。 3. AI Insights:根据观众已在 YouTube 上观看的内容获取视频创意和大纲建议。 4. Aloud:使用自动配音工具轻松创建更多语言的内容。 5. 创作者音乐中的辅助搜索:使用这款人工智能辅助搜索工具为您的视频找到完美的配乐。 详细介绍:https://blog.google/products/youtube/youtubenewcreatortools2023/
2025-02-09
介绍几款实能对YOUTUBE视频实时同时传译的AI工具,并提供使用教程,适合新手小白学习使用
以下为您介绍几款能够对 YouTube 视频实时同时传译的 AI 工具及使用教程,适合新手小白学习使用: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 YouTube 视频的双语字幕,解决了 YouTube 自带字幕翻译点击路径长的问题。 插件安装地址:https://immersivetranslate.com/ 2. Kimi: 由月之暗面科技有限公司开发。 最大特点在于超长文本(支持最多 20 万字的输入和输出)的处理和基于文件、链接内容对话的能力。 用户可以上传多种格式文件,Kimi AI 能够阅读并理解相关内容,为用户提供基于文件内容的回复。
2025-02-09