直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI大模型历程

回答

AI 大模型的发展历程如下:

  1. 早期阶段(1950s - 1960s):包括专家系统、博弈论、机器学习初步理论。
  2. 知识驱动时期(1970s - 1980s):出现专家系统、知识表示、自动推理。
  3. 统计学习时期(1990s - 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。
  4. 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。

自 2022 年 11 月 30 日 ChatGPT 发布以来,国内大模型大致经历了三个阶段:准备期(ChatGPT 发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。

当前,随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,并广泛应用于多个行业和领域。当前 AI 的前沿技术点包括:大模型(如 GPT、PaLM 等)、多模态 AI(视觉 - 语言模型如 CLIP、Stable Diffusion 以及多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

开发:AI应用大模型商业化落地现状与思考

大家下午好!很荣幸能够作为本次活动的分享嘉宾,我是甲木,LangGPT团队成员,很高兴给大家带来《大模型商业化落地现状与思考》的分享。本次分享的内容主要分为五个模块,从大模型的背景入手、深入探讨其在商业领域的现状和应用。接着,我们将分析在商业化过程中所遇到的挑战,并分享一些实战经验,最后将展望AI作为通用技术能够发挥生产力效能所要经历的几个阶段。[heading2]一、大模型的背景和趋势[content]首先,我们先来看大模型的背景和发展趋势。关于AI的演进历程,很多媒体包括各类研究资料都已经做过详细的介绍,相信今天在座的各位对AI的基本情况都已有所了解,因此我不会过多赘述AI的演进历程。(有兴趣的小伙伴可以多从公开资料中查找一下~)我们的重点将放在大模型当前的应用能力上,随着大模型技术的愈发成熟,规模增大,大模型为AI Agent()提供强大能力。Agent+大模型将有望构建具备自主思考、决策和执行能力的智能体,进一步提升大模型的应用能力,广泛应用于多个行业和领域。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

2023年度中文大模型基准测评报告.pdf

5(关键进展)时间准备期成长期爆发期◼自2022年11月30日ChatGPT发布以来,AI大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。国内学术和产业界在过去一年也有了实质性的突破。大致可以分为三个阶段,即准备期(ChatGPT发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。故事的起点:ChatGPT发布国内迅速形成大模型共识

其他人在问
Ai诈骗的案例分析
以下为一些 AI 诈骗的案例分析: 2019 年 3 月,某国际能源公司首席执行官接到未知来电,对方冒充其德国母公司的 CEO(声音与口音、语气习惯都极为相似),以公司出现运营危机为由,要求提供 220000 欧元或 243000 美元的资金支援,并提供了匈牙利银行账户。尽管指示不合规且涉及大额资金流转,被害人最终还是选择执行命令并完成转账。资金从匈牙利流向墨西哥后再被分散,截至 2023 年 5 月仍未追回。
2024-11-20
有没有推荐的AI图片生成软件
以下为您推荐一些 AI 图片生成相关的软件: 1. 海报生成工具: Canva(可画):https://www.canva.cn/ ,是一个受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可辅助选色和字体样式,通过简单拖放操作创建海报。 稿定设计:https://www.gaoding.com/ ,智能设计工具,采用先进人工智能技术,自动分析生成设计方案,稍作调整即可完成设计。 VistaCreate:https://create.vista.com/ ,简单易用的设计平台,提供大量设计模板和元素,可用 AI 工具创建个性化海报,智能建议功能可助用户找合适元素。 Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 2. 图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,将上传照片转换为芭比风格,效果好。 3. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户上传图片并描述材质和风格可生成高质量 3D 模型。 CSM AI:Common Sense Machines 支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域模型生成,用户上传图片或输入文本提示词生成 3D 模型。 VoxCraft:生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-20
what is AI
AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于 AI 的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,即便技术再进步,这一生态位也不会改变。 从任务角度看,对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是 AI 所感兴趣的。 在应用方面,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能根据用户情况提供定制化训练计划和建议。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-11-20
推荐一个免费的ai写摘要软件
以下为您推荐一些免费的 AI 写摘要软件: Bing(https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx) Claude 2(https://claude.ai/) 此外,还有一些在其他写作方面表现出色的 AI 工具: 简历写作: Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,包括摘要、工作经验和教育等专业部分,并保持一致语调。 Rezi:受到超过 200 万用户信任的领先 AI 简历构建平台,能自动化创建简历的各个方面。 Huntr 的 AI 简历构建器:提供免费简历模板,以及 AI 生成的总结、技能、成就生成器和工作匹配。更多 AI 简历产品可查看:https://www.waytoagi.com/category/79 论文写作: 文献管理和搜索:Zotero 可自动提取文献信息;Semantic Scholar 是 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作:Grammarly 提供文本校对、语法修正和写作风格建议;Quillbot 可重写和摘要,优化内容。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,便于数据分析和可视化;Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式和数学公式;Overleaf 是在线 LaTeX 编辑器,提供模板库和协作功能。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭,确保原创性。 需要注意的是,这些内容由 AI 大模型生成,请仔细甄别。
2024-11-20
AI在企业落地的场景或案例
以下是一些 AI 在企业落地的场景或案例: 企业运营方面:包括日常办公文档材料的撰写整理、营销对话机器人的应用、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源的简历筛选、预招聘、员工培训等。 教育领域:协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体行业:定制化游戏,动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 零售/电商领域:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 金融/保险行业:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。 在企业中建构人工智能的案例研究包括: 智能扬声器:需要探测触发词或唤醒词、进行语音识别、意图识别,并执行相关程序。但智能音箱公司因需对每个用户需求单独编写程序而花费大量资金教育客户,这是其面临的困境。 自动驾驶汽车:包括汽车检测(使用监督学习,需多个方位的摄像头或传感器)、行人检测(使用相似技术)、运动规划(输出驾驶路径和速度)。 人工智能团队的角色示例有: 软件工程师:负责软件编程工作,在团队中占比 50%以上。 机器学习工程师:创建映射或算法,搜集和处理数据以训练神经网络或深度学习算法。 机器学习研究员:开发机器学习前沿技术,可能发表论文或专注研究。 应用机器学习科学家:从学术文献或研究文献中寻找前沿技术来解决问题。 数据科学家:检测和分析数据背后的意义,并向团队展示结论。 数据工程师:整理数据,确保数据安全、易保存和读取。 AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2024-11-20
什么是AI中的Token
Token 在 AI 中,就像人类语言有最小的字词单元,大模型也有自己的语言体系,其中的最小单元被称为 Token。 在将人类发送的文本传递给大模型时,大模型会先把文本转换为自己的语言,推理生成答案后再翻译为人类能看懂的语言输出。不同厂商的大模型对中文的文本切分方法不同,通常情况下,1 Token 约等于 1 2 个汉字。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。Token 可以是单词,也可以是字符块,例如单词“hamburger”被分解成“ham”“bur”和“ger”,而很短且常见的单词像“pear”是一个 Token。 大模型的收费计算方法以及对输入输出长度的限制,都是以 Token 为单位计量的。
2024-11-20
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
AI的发展历程
AI 的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法的局限性,20 世纪 70 年代出现了“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2024-10-29
大语言模型发展历程
大语言模型的发展历程如下: 2017 年,发布了《Attention Is All You Need》论文,为后续发展奠定基础。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),其创新性地采用双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)以更好地推断语义信息,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。 此外,OpenAI 的 GPT3.5 是其大语言模型 GPT 系列中多年来最完善的一次迭代,并通过 ChatGPT 成功推向大众,在短时间内实现了用户的快速增长。 在语言模型的发展中,20 世纪 80 年代发明了递归神经网络(RNN)处理单词序列,但存在训练速度慢和遗忘问题。1997 年发明的长短期记忆(LSTM)网络解决了部分问题,但语言能力有限。 2020 年中期,Lewis 等人提出检索增强生成(RAG),它将外部数据检索整合到生成过程中,提高了模型提供准确和相关回答的能力。RAG 的演进轨迹在四个不同阶段展开,2017 年的创始阶段主要重点是通过预训练模型(PTM)来吸收额外的知识以增强语言模型。
2024-10-15
ai发展历程
AI 技术的发展历程大致可分为以下几个阶段: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):主要有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,包括元学习、一次学习、提示学习等。 5. 可解释 AI,涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学,涉及强化学习、运动规划、人机交互等。 7. 量子 AI,包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2024-09-30
详细介绍aigc技术发展历程
AIGC 技术的发展历程主要包括以下几个重要阶段: 1. 机器学习阶段: 根据卡耐基梅隆大学计算机学院教授汤姆·米切尔(Tom Michell)的定义,机器学习是指“计算机程序能从经验 E 中学习,以解决某一任务 T,并通过性能度量 P,能够测定在解决 T 时机器在学习经验 E 后的表现提升”。 数据获取:为机器提供用于学习的数据。 特征工程:提取出数据中的有效特征,并进行必要的转换。 模型训练:学习数据,并根据算法生成模型。 评估与应用:将训练好的模型应用在需要执行的任务上并评估其表现,如果取得了令人满意的效果就可以投入应用。 2. 图灵测试与起源阶段:1950 年,艾伦·图灵发表了一篇划时代的论文《计算机器与智能》,探讨了让机器具备人类一样智能的可能性。论文在开篇就抛出了一个有趣的问题:“机器能思考吗?” 3. 行为主义阶段: 行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。 与符号主义相比,行为主义不强调对智能的深层理解,而是通过观察和模仿行为来实现智能控制。 这一流派在智能机器人和自动化控制系统领域有广泛应用,21 世纪末随着相关技术的进步,行为主义开始受到更多关注,尽管它在智能模拟方面存在局限性,如缺乏对智能本质的深入理解。
2024-09-28
AIGC技术发展历程
AIGC 技术的发展历程如下: 起源:1950 年,艾伦·图灵发表了划时代的论文《计算机器与智能》,探讨了让机器具备人类一样智能的可能性,提出了“机器能思考吗?”这一问题,开启了 AIGC 技术的探索。 行为主义:行为主义起源于控制论,主要关注模拟人的智能行为和动作,而非内部认知过程。21 世纪末随着相关技术的进步,行为主义在智能机器人和自动化控制系统领域受到更多关注,尽管存在对智能本质缺乏深入理解等局限性。 发展现状:GenAI(生成式 AI)作为一种强大的技术,能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》《科技伦理审查办法(试行)》等形成了共同监管的形势。
2024-09-28
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
你认为目前最好用的大模型有哪些?
目前最好用的大模型包括: 1. OpenAI 的 GPT4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,如文本生成、理解、翻译及各种专业和创意写作任务,能通过大量数据学习理解和生成人类语言,处理复杂问题和理解上下文能力出色。 2. Anthropic 公司的 Claude 3。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型。 大型模型主要分为两类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同点: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 此外,如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-19
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
图说AI大模型?
以下是关于 AI 大模型的相关内容: 一、大模型的整体架构 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,这里的数据层并非用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。 3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法实现)或多模态模型(如市面上的文生图、图生图等模型,训练所用数据与 llm 不同,为图文或声音等多模态的数据集)。 4. 平台层:例如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:也就是应用层,是用户实际看到的地方。 二、再补充一些概念 AI Agent Agent 是从年前到现在比较火的概念,被很多人认为是大模型的未来主要发展方向。中间的“智能体”其实就是 llm 或大模型,四个箭头分别是为 llm 增加的工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它把 llm 之间以及 llm 和工具之间通过代码或 prompt 的形式进行串接。 三、必须理解的核心概念 1. 泛化能力:指模型在未曾见过的数据上表现良好的能力,用大白话讲就是“举一反三”的能力,人类泛化能力很强,无需见过世界上每一只猫就能认识猫的概念。 2. 多模态:指多数据类型交互,能提供更接近人类感知的场景,大模型对应的模态有文本、图像、音频、视频等。 3. 对齐能力:指与人类价值观与利益目标保持一致的能力。但目前阶段,有很多提示词注入的方法能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场。
2024-11-19
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
认为如果我是一个大学生,想要通过大模型去参加项目什么样的方向会比较好我应该做一个怎样的大模型?
对于大学生想要通过大模型参加项目,以下是一些方向和相关知识: 大模型的概念: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。 3. 找老师:即选择合适的算法让大模型更好地理解 Token 之间的关系。 4. 就业指导:为了让大模型更好地胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,会对输入进行数字化形成词汇表。 大模型的训练: 一般训练会有 3 个步骤,每个步骤都需要资金投入。 1. 无监督学习:模型通过分析大量文本数据,学习语言的基本结构和常识,具备文本补齐能力而非直接回答问题,将人类的知识通过向量化的方法转换,从而获得基础的语言模型。 2. 清洗出好的数据。 3. 指令微调:模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。输入内容包括 3 个部分,中间可能有分隔符。还有对齐过程,通过引入人类的评价标准和处理特定格式要求,进一步优化模型的输出以符合人类的期望。 大模型的微调: 在人工智能领域,通常会根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等,通过训练获得广泛的自然语言理解能力,但在特定领域表现可能不理想。微调是对大模型针对特定领域进行的训练过程,通过在特定领域的数据上训练模型,优化所有层的参数,提高其在该领域的专业性。从头开始训练一个具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可以在现有模型基础上更经济、高效地适应新的应用领域。
2024-11-18