Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI是什么时候发展起来的

Answer

AI(人工智能)的发展最早可以追溯到上世纪。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1945 年,Alan Turing 就考虑用计算机来模拟人脑,设计了 ACE 来模拟大脑工作。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。1994 年,一组 52 名心理学家签署了有关智能科学的广泛定义的社论。2000 年代初,“通用人工智能”(AGI)一词流行起来。2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发了全球的 AI 浪潮。

Content generated by AI large model, please carefully verify (powered by aily)

References

走入AI的世界

[title]走入AI的世界[heading2]1智能起源:极简AI发展史和生成式AI的革命性突破2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

[title]机器之心的进化/理解AI驱动的软件2.0智能革命[heading1]01 AI进化史早在1945年,Alan Turing就已经在考虑如何用计算机来模拟人脑了。他设计了ACE(Automatic Computing Engine -自动计算引擎)来模拟大脑工作。在给一位同事的信中写道:"与计算的实际应用相比,我对制作大脑运作的模型可能更感兴趣......尽管大脑运作机制是通过轴突和树突的生长来计算的复杂神经元回路,但我们还是可以在ACE中制作一个模型,允许这种可能性的存在,ACE的实际构造并没有改变,它只是记住了数据......"这就是机器智能的起源,至少那时在英国都这样定义。

报告:GPT-4 通用人工智能的火花

[title]报告:GPT-4通用人工智能的火花[heading1]1.介绍Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。

Others are asking
AI智能体对个人工作能力培养方面的启示
AI 智能体对个人工作能力培养有以下启示: 1. 工作方法方面: 彻底让自己变成一个“懒人”。 能动嘴的不要动手,用嘴说出想做的事远比打字快。 能动手的尽量用 AI,用 AI 远比苦哈哈手敲快。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视自己的工作流程,看哪个部分可以更多地用上 AI。 2. 个人素质方面: 技术层面之外,个人能力的提升是核心,尤其是学习能力和创造能力。 学习能力是通过持续阅读和实践来吸收、消化和积累知识的能力,是构建个人知识体系的基础和个人成长的动力源泉。 为保持竞争力,要培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识,全方位、多角度学习和实践,以积累知识、提高适应能力和创新思维。 3. 技术应用方面: 迅速掌握生成式人工智能的基本概念和潜在影响,重点理解其如何革新工作方式和重塑行业格局。 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 学习提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体,让其革新工作方式,多个虚拟伙伴和助手协同工作,提高工作效率和创新能力。 需要注意的是,AI 技术的出现能把大部分人的能力提升到及格线以上,人与人之间最大的差距在于认知差距。对创建 AI 智能体感兴趣的小伙伴,可前往 WaytoAGI 开源免费社区了解(里面有保姆级教程)。
2025-01-22
AI智能体对个人工作及职业规划的启示
AI 智能体对个人工作及职业规划具有多方面的启示: 在职业规划方面: 1. 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 2. 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 3. 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化建议。 4. 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 在个人工作方面: 1. 掌握基本概念和潜在影响:对于生成式人工智能,应迅速了解其基本概念和潜在影响,无需深入技术细节,重点在于理解其对工作方式和行业格局的革新。 2. 应用现有产品和工具:深入了解市场上的人工智能产品和工具,并积极应用于实际工作,通过实践学习其优势和局限性。 3. 学习提示词技术:掌握提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果,提升工作效率和产出质量。 4. 探索构建智能体:构建智能体,赋予其特定角色和任务,协同工作,提高工作效率和创新能力。 总之,AI 智能体为个人提供了提效的可能,如同拥有数字员工,在职业规划和工作中都能发挥重要作用。
2025-01-22
什么是AI智能体
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。它拥有各项能力,可以帮助人们做特定的事情。目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。体验过 GPT 或文心一言大模型的小伙伴应该知道,现在基本能用自然语言来编程,降低了编程门槛。但之前使用 GPT 或文心一言大模型时会出现胡编乱造、时效性差、无法满足个性化需求等问题,而 AI 智能体的出现正是解决这些问题的绝佳方式。AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以 AI 智能体的出现就是结合自己的业务场景,针对自己的需求,捏出自己的 AI 智能体来解决自己的事情。
2025-01-22
1.AI搜索的prompt怎么写 2.AI搜论文的prompt怎么写比较好
以下是关于 AI 搜索和 AI 搜论文的 prompt 写作的相关指导: 对于 AI 搜索的 prompt 写作: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关图片参考,以提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免意外输出,添加如分辨率、比例等限制性条件。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化。 对于 AI 搜论文的 prompt 写作,您可以参考以下要点: 1. 设定角色为资深学术研究者,明确具备高效的学术论文阅读、总结能力。 2. 遵循“二八原则”进行论文总结。 3. 输出阅读的总结文字,包括列出论文的明确方法论、经过验证的结论等关键信息。 4. 采用结构化的内容组织方式,如使用编号、子标题和列表。 5. 按照规定概述内容解读结语的结构写作,先概述规定内容,然后解读具体内容,最后以结语结束。 6. 结合案例和挑战,增强说服力并提供解决方案。 7. 引入法规内容和实际操作案例,提供详细解释和建议。 8. 使用商业术语,确保专业性和针对性。 9. 注意文章结构,标题要开门见山、切中要害并引起目标群体悬念;第一部分说清楚要解决的问题及背景和可能导致的损失;第二部分以案例引入;第三部分对案例进一步分析;第四部分给出具体操作建议,包括事前、事中、事后的注意事项和措施。 总之,编写高质量的 prompt 需要不断实践和总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-22
如何利用AI读书
以下是关于如何利用 AI 读书的一些方法和建议: 1. 尝试撰写结构化 prompt 或使用李继刚等的 prompt 最佳实践。 2. 进行 AI 绘画,画一幅能表达中秋的画面。 3. 实操:在中找一些案例实操。 4. 数据:查看 AI 产品榜数据库>。 5. 阅读:通往 AGI 之路知识库阅读,每日小互的推特阅读获取最新动态:http://waytoagi.com/xiaohu。 6. 探索:生成式视频案例可以找一些欣赏,有机会自己动手做一个视频。 在读书时,可参考以下案例: 1. 如读万维钢的新书《拐点》时,看到有触动但需保持批判性思考和怀疑的文本,若足够强势,当前 AI 对人的作用有三个:信息杠杆、发现自己真正想要的、帮助形成自己的观点和决策。 2. 将上述书摘整理归纳,标记重点,打赏标签,放入笔记系统,准备展开深度思考和实践。 3. 基于笔记中提到的 AI 对人的三种最终的赋能模式,以自己深度思考的问题为例,践行这套方法论,体会“信息杠杆”如何令“思维换挡”,感受如何“让自己发现究竟想要什么”。 4. 通过 AI 信息杠杆,利用 AI 搜索引擎和大模型,迅速掌握“如何用好飞书文档”“markdown 语法基础”并结合两者完成“永飞书创建提示词库、飞书+markdown 打造个人知识库”等思考。 5. 基于上述实践,生成“自己的观点和决策”,并将其打造成体系化的内容产品,实现价值。 同时,虽然在利用 AI 辅助写作等方面可能存在一些困难,如打断心流、失去掌控等,但应保持好奇和开放心态,为自己和孩子们寻找更多借助 AI 拓展思维边界的方式。
2025-01-22
做会议记录比较好用的AI工具
以下是一些做会议记录比较好用的 AI 工具: 团队会议总结 Vowel:https://www.vowel.com/ Personalized AI, Everywhere:https://www.augment.co/?ref=superhuman1_mar23&utm_source=superhuman.beehiiv.com&utm_medium=newsletter&utm_campaign=thisaicanhackinterviews Noty 会议总结为待办事项:https://noty.ai/ The 6 Best AI Tools for Meeting Notes in 2024:https://www.meetjamie.ai/blog/the6bestaimeetingtools The smartest AI team assistant Sembly AI:https://www.sembly.ai/ Briefly: AI meeting summary&email follow up Chrome 应用商店:https://chrome.google.com/webstore/detail/brieflyaimeetingsummar/bjmgcelbpkgmofiogkmleblcmecflldk Welcome fireflies.ai:https://app.fireflies.ai/ Noota Screen Recorder&Meeting Assistant Chrome 应用商店:https://chrome.google.com/webstore/detail/nootascreenrecordermee/eilpgeiadholnidgjpgkijfcpaoncchh Read Meeting Reports:https://app.read.ai/analytics/meetings Read Create Workspace:https://app.read.ai/analytics/settings/workspace/new 10 AI Notes Taking Tool to Summarize Meetings in Seconds Geekflare:https://geekflare.com/ainotestakingtools/ 此外,还有以下免费的会议语音转文字工具,不过大部分有使用的时间限制,超过一定的免费时间后可能需要付费: 飞书妙记:https://www.feishu.cn/product/minutes 通义听悟:https://tingwu.aliyun.com/home 讯飞听见:https://www.iflyrec.com/ Otter AI:https://otter.ai/ 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。腾讯会议也是一款不错的 AI 会议记录生成工具,它可以在会议过程中利用语音识别和自然语言处理技术自动生成会议记录,包括发言内容、讨论要点等,方便用户会后回顾和整理。
2025-01-22
让图片动起来
以下是关于让图片动起来的相关内容: 关于生成式 AI 的内容承载,短期内可能因新鲜感获流量红利,但人们最终在意的仍是高质量内容。我们掌握了各种先进工具,如让老照片动起来等,但关键是如何更好地结合两张照片。 实现让图片中人物动起来及两张照片更好结合的方法: 方法一:利用 MJ 画图得到想要的底图,使用 InsightFaceSwap 插件处理脸部(因对多人脸部同时处理效果不好,需先分割裁剪图片分别处理再缝合),最后用可灵或其他软件让图片动起来。 方法二:在网上寻找能直接融合两张照片的软件或项目,若没有则纯 P 图,然后用图生视频的项目完成。 使用 Camera Motion 让图片动起来的步骤: 上传图片:点击“AddImage”。 输入提示词:在“Prompt”中输入。 设置运镜方向:选择想要的方向,输入运镜值。 设置运动幅度:与画面主体运动幅度有关,可任意设置。 其它:选择好种子、是否高清、是否去除水印。 生成视频:点击“create”。
2025-01-12
你能让图片动起来么?
要让图片动起来,可以通过以下几种方法: 1. 方法一: 利用 MJ 画图绘制想要的底图。 使用 InsightFaceSwap 插件进行换脸或让脸部更像,但因该插件对多人脸部同时处理效果不佳,需先对图片进行分割裁剪,分别处理后再缝合。 最后使用可灵或其他软件让图片动起来。 2. 方法二: 在网上寻找能够融合两张照片的软件或项目,直接对图片进行融合。若没有,则进行纯 P 图处理,然后利用图生视频的项目完成。 此外,还有一些相关的工具和技巧: 工具“清影”:输入一张图片和相应提示词,清影大模型会将图片转变为视频画面。也可以只输入图片,让模型自行发挥想象力生成有故事的视频。 技巧 1:选用清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。若原图不够清晰,可使用分辨率提升工具。 技巧 2:提示词要简单清晰。可以选择不写 prompt,让模型自行操控图片动起来;或者明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词。 工具“Camera Motion”: 上传图片:点击“AddImage”。 输入提示词:在“Prompt”中输入。 设置运镜方向:选择想要的运镜方向。 设置运动幅度:与画面主体运动幅度有关,与运镜大小无关,可设置任意值。 其他:选择好种子(seed)、是否高清(HD Quality)、是否去除水印(Remove Watermark)。 生成视频:点击“create”。
2025-01-08
让图片能动起来的工具
以下是一些能让图片动起来的工具: 1. 清影:输入一张图片和相应的提示词,清影大模型会将图片转变为视频画面。您也可以只输入图片,模型会自行发挥想象力生成有故事的视频。使用时的小技巧包括:选用尽可能清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。如果原图不够清晰,可使用分辨率提升工具。提示词要简单清晰,可以选择不写 prompt 让模型自行操控,也可以明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词。若不明确模型如何理解图片,可将照片发送到清言对话框进行识图明确主体描述。 2. VIGGLE: Mix:先上传一个视频和一张角色图像,Viggle 会自动将视频的动态赋予给这个角色,形成新视频,能模拟角色 3D 状态,准确还原身体旋转、四肢交叠等动作,也可以利用现有的模版视频作为动作获取来源。 Multi:通过视频的动作,将上传的多个角色进行识别并赋予动作,形成新视频。 Move:将视频的动作直接映射在图片人物身上,实现“让静态图动起来”。
2024-12-30
让旧照片动起来
以下是一些可以让旧照片动起来的工具和相关信息: Dreamina: 网址:https://dreamina.jianying.com/aitool/home?subTab 优点:不需要🪜,每天有免费额度。 注册:抖音号或手机号。 时间:5min 体验:上传一张离谱村的图片,即使不加提示词也能让图片有一些动态。父母上传风景照片后,有的水面动起来效果不错,有的画面扭曲。还引发了关于肖像权、版权、信息安全及技术意义的探讨。对于能否在扣子里一起用的问题,有插件的情况下应该可以,否则直接去官网更方便快捷。 Sora: 网址:https://openai.com/sora 优点:发布的成果好,集成在 openai 一套里可用。 限制:需要🪜,需要 gmail 注册,需要订阅后才能使用。 时间:30 60min 价格:GPT 4 20$一个月
2024-12-20
我需要一个能把很多照片拼接起来生成photostory的AI软件
以下是为您推荐的一些可能用于将很多照片拼接起来生成 photostory 的 AI 软件: 1. DiT:它不仅能生成高质量的逐帧图像,还能将这些图像串成流畅的视频,避免画面跳动问题。 2. 特看科技的 Topview.ai:这是一款多模态转换工具,作为 AI 驱动的营销视频生成工具,可将输入的提示词或者商品详情页链接等素材,一键转换为爆款商业短视频。 3. MJ:通过设置相机参数、写实风格等,使用 MJ v 6.0 绘图,还可进行图片裁剪和拼接等操作。 4. Pika、Pixverse、Runway、SVD:可用于生成不同类型的视频内容,包括剧情片、科幻片、战争片、奇幻片等。 您可以根据自己的需求和使用习惯选择适合您的软件。
2024-12-05
如何把静态的图片动起来
以下是一些可以将静态图片动起来的方法和工具: 1. 使用 VIGGLE 工具: Mix 模式:先上传一个视频和一张角色图像,Viggle 会自动将视频的动态赋予给这个角色,形成新视频。它能模拟出角色的 3D 状态,准确还原身体旋转、四肢交叠等动作,也可以利用现有的模版视频作为动作获取来源。 Multi 模式:通过视频的动作,将上传的多个角色进行识别并赋予动作,形成新视频。 Move 模式:将视频的动作直接映射在图片人物身上,实现“让静态图动起来”。 案例:,结合 Midjourney 制作图片。 2. LiveSketch:为素描“注入生命”,通过文本提示将静态素描动画化。 应用场景:FlipaClip 提供的服务方向+LiveSketche 可更便捷生成动画;简笔画替换成骨骼图+controlnet+帧图可生成动态漫;简笔画替换成骨骼图+runway 控制可生成动态视频。 技术特点:能够将单一主题的静态素描转换成动画,用户只需提供描述所需动作的文本提示,系统就会生成短动画。通过修改描述运动的提示文本,还可以控制生成结果的程度。 3. 使用 Camera Motion: 上传图片:点击“AddImage”上传图片。 输入提示词:在“Prompt”中输入提示词。 设置运镜方向:选择想要的运镜方向,输入运镜值。 设置运动幅度:运动幅度和画面主体运动幅度有关,与运镜大小无关,可设置成任意值。 其它设置:选择好种子(seed),是否高清(HD Quality),是否去除水印(Remove Watermark)。 生成视频:点击“create”生成视频。
2024-12-03
大模型的发展路径是什么样的
大模型的发展大致可以分为三个阶段: 1. 准备期:自 2022 年 11 月 30 日 ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 在发展过程中,大模型主要有以下几类: 1. 原创大模型:这类模型稀少而珍贵,需要强大的技术积累、持续的高投入,风险较大,但一旦成功竞争力强。 2. 套壳开源大模型:利用现有资源快速迭代和改进,需要在借鉴中实现突破和创新。 3. 拼装大模型:将过去的小模型拼接在一起,试图通过整合已有资源来实现质的飞跃,但整体性能并非各部分简单相加。 此外,360 作为国内唯一又懂大模型又懂安全的双料厂商,提出以“模法”打败魔法的理念,打造专业的安全大模型,只依赖大模型本身的能力,在恶意流量分析和恶意邮件检测效果方面超越 GPT 4,并与 360 积累的工具结合,提升攻击事件的检测和发现能力。同时,企业在运用大模型时,要将好的知识和算法结合,从数据中提炼出真正的实战知识。
2025-01-20
我想系统了解有关agent的应用及发展情况
智能体(Agent)在现代计算机科学和人工智能领域是一个基础且重要的概念,具有广泛的应用和不断发展的技术。 应用领域: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计与实现: 通常涉及以下几个步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 发展情况: Agent 算是从年前到现在比较火的一个概念,也被很多人认为是大模型的未来的一个主要发展方向。目前行业里主要用到的是一个叫 langchain 的框架,它把大模型(LLM)和 LLM 之间,以及 LLM 和工具之间,通过代码或 prompt 的形式进行了串接。为 LLM 增加了工具、记忆、行动、规划等能力。 随着 AI 的发展,大家对 AI 的诉求变得越来越具体,简单的 ChatBot 的弊端日渐凸显,基于 LLM 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有了很大的进展。但这些平台都有着固有局限,对于专业 IT 人士不够自由,对于普通用户完成复杂业务场景又有限制。
2025-01-19
我不会AI我可以往AI上面发展吗
如果您不会 AI ,完全可以往这方面发展。以下是一些您需要了解和学习的基础内容: 1. AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 4. 评估和调优: 性能评估:学会如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:掌握使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 另外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)比预期更快地获得知识,并推动人类一同进步。开发具有潜在空间层次结构的堆叠 AI 模型,能帮助 AI 模型理解模式和关系。创建专门从事特定领域的 AI 可能比创建全能 AI 更容易,我们更需要特定领域的专家 AI 。同时,要让 AI 从在线基础投入到原子的世界中,让人类专家配备可穿戴设备收集互动供 AI 学习,避免复制危险的偏见。
2025-01-18
如何忘AI这方面发展
如果您想在 AI 方面发展,可以参考以下几点: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您需要关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。同时,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 2. 对于创新者来说,在前沿工作并开发新技术时,应对监管制度可能具有挑战性。英国确认致力于推进帕特里克·瓦伦斯爵士提出的为 AI 建立监管沙盒的关键建议,这将使监管机构能够直接支持创新者,并帮助他们将产品推向市场。 3. 英国已退出欧盟,可以建立一种监管方法,使英国成为 AI 超级大国。这种方法将积极支持创新,同时解决风险和公众关注。英国拥有蓬勃发展的初创企业,监管框架将支持其扩大规模并参与国际竞争。这种支持创新的方法也将对海外的 AI 企业在英国设立业务产生强大的激励作用。 4. 英国在制定 AI 监管方法时依靠政府、监管机构和企业之间的协作。最初,不打算引入新的立法。过早匆忙立法可能会给企业带来不必要的负担。同时,在赋予监管机构领导权的同时,也在设定相关内容。
2025-01-18
总结一下大模型数据发展的最新趋势,基于历史的事实和数据总结23年以来发生了什么,25年可能发生什么
以下是关于大模型数据发展趋势的总结: 2023 年以来: 大量创新大模型架构涌现,尝试在保留 Transformer 优势的同时解决其算力开销太高的问题,对 Transformer 的绝对统治地位形成有力挑战。 多种有代表性的技术路径出现,如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。这些模型在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展,使得大模型架构呈现出日益明显的混合趋势,更多创新架构具备“博采众家之长”的特点。 对于 2025 年的预测,由于目前的信息有限,难以给出确切的预测。但可能会在现有创新架构的基础上进一步优化和融合,出现更高效、更强大且更具通用性的大模型架构,同时可能在技术应用和行业落地方面取得更显著的成果。
2025-01-16
如今ai发展到什么地步
AI 技术的发展历程和前沿技术点如下: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 OpenAI 提出的通用人工智能(AGI)的五个发展等级分别为: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 关于红杉|AI 50 未来公司: 去年,生成式 AI 从不引人注意的地方走到了 AI 50 强榜单的前列。今年,随着企业用户和消费者的 AI 生产力大幅提高,它成为前沿和中心。尽管 2023 年美国的大部分 AI 风投都流向了基础设施领域,其中 60%流向了最大的大语言模型(LLM)提供商,但应用公司仍在 AI 50 强榜单中占据主导地位。 与此同时,我们开始看到 AI 为公司赋能。如今,许多公司正将 AI 融入其工作流程,以此来快速达成 KPI。我们看到大公司正通过将 AI 融入其产品的方式而获益。工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率。Palo Alto Networks 利用 AI 降低了处理费用的成本。Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 最近宣布,通过将 AI 融入用户支持,他们在运行率方面节省了 4000 多万美元。现在,成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。AI 50 强企业正在快速进化。不远的将来,我们有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。在更好、更廉价地复制现有功能之后,我们将开发全新的用户界面,以提供有价值的新体验。原文链接:https://www.sequoiacap.com/article/ai502024/ ,发表时间:2024 4 11,作者:Konstantine Buhler,编译:Z Potentials 。
2025-01-13