Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

当前最好的开源目标检测

Answer

目前较好的开源目标检测算法包括:

  • 基于深度学习的目标检测算法,如 R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 等。
  • 基于传统计算机视觉技术的目标检测算法,如 HOG、SIFT、SURF 等。

YOLOv8 是一款出色的目标检测跟踪模型,具有快速准确的多对象识别和定位能力,支持实例分割、人体姿态估计等,多平台兼容,是一站式视觉识别解决方案。其详细介绍可参考:https://docs.ultralytics.com/models/ ,GitHub 地址为:https://github.com/ultralytics/ultralytics

Content generated by AI large model, please carefully verify (powered by aily)

References

问:图像融合和目标检测是什么

[title]问:图像融合和目标检测是什么Q:图像融合和目标检测是什么?大致的原理是什么?有哪些相关的算法?图像融合是将两个或多个图像合成为一个新的图像,以获得比原始图像更全面和丰富的信息。它可以通过不同的技术实现,如像素级融合、特征级融合和决策级融合。图像融合在实际应用中有多种用途,包括提高图像质量、增加图像信息量、遥感图像处理以及计算机视觉和机器人技术中的应用。目标检测是计算机视觉领域中的一个重要任务,其目标是在图像或视频中准确地识别和定位特定对象。随着多模态数据的广泛应用,如图像、文本、语音等,将不同模态的信息进行融合可以进一步提高目标检测的性能和鲁棒性。因此,图像融合和目标检测都是计算机视觉领域中重要的技术,它们在多个领域都有广泛的应用前景和研究价值。图像融合和目标检测的大致原理分别是将多个不同的图像合并成一个新的图像以获得更准确、更全面的信息和在图像中找到特定的目标并对其进行定位和识别。图像融合的相关算法有:小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。目标检测的相关算法有:基于深度学习的目标检测算法(如R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等)、基于传统计算机视觉技术的目标检测算法(如HOG、SIFT、SURF等)。欢迎关注我们的公众号,或加入飞书群:

XiaoHu.AI日报

[title]XiaoHu.AI日报[heading2]2月21日🔗 https://x.com/xiaohuggg/status/1760191358298710370?s=205⃣️🎯 YOLOv8目标检测跟踪模型:快速准确的多对象识别和定位。支持实例分割、人体姿态估计等。多平台兼容,一站式视觉识别解决方案。🔗详细介绍:https://docs.ultralytics.com/models/🔗 GitHub:https://github.com/ultralytics/ultralytics🔗 https://x.com/xiaohuggg/status/1760149057249636570?s=206⃣️🎥 Sora工作原理解析:结合扩散模型和Transformer架构。采用空间时间补丁和时空立方体。利用知识图谱组合视频,显示巨大潜力。🔗 https://x.com/xiaohuggg/status/1760139842783248609?s=207⃣️🚀 OpenAI技术人员的一天...🔗 https://x.com/xiaohuggg/status/1760130189932265553?s=20

XiaoHu.AI日报

[title]XiaoHu.AI日报[heading2]2月21日🔗 https://x.com/xiaohuggg/status/1760191358298710370?s=205⃣️🎯 YOLOv8目标检测跟踪模型:快速准确的多对象识别和定位。支持实例分割、人体姿态估计等。多平台兼容,一站式视觉识别解决方案。🔗详细介绍:https://docs.ultralytics.com/models/🔗 GitHub:https://github.com/ultralytics/ultralytics🔗 https://x.com/xiaohuggg/status/1760149057249636570?s=206⃣️🎥 Sora工作原理解析:结合扩散模型和Transformer架构。采用空间时间补丁和时空立方体。利用知识图谱组合视频,显示巨大潜力。🔗 https://x.com/xiaohuggg/status/1760139842783248609?s=207⃣️🚀 OpenAI技术人员的一天...🔗 https://x.com/xiaohuggg/status/1760130189932265553?s=20

Others are asking
开源的数字人工具
以下是一些开源的数字人工具: 1. 名称:aigcpanel 特点:开源且适合小白用户,具有一键安装包,无需配置环境,简单易用。 功能:能够生成数字人视频,支持语音合成和声音克隆,操作界面中英文可选。 系统兼容:支持 Windows、Linux、macOS。 模型支持:MuseTalk(文本到语音)、CosyVoice(语音克隆)。 使用步骤:下载 8G+3G 语音模型包,启动模型即可。 GitHub 链接: 官网链接: 2. 名称:HeyGen 特点:AI 驱动的平台,可创建逼真的数字人脸和角色。 适用场景:适用于游戏、电影和虚拟现实等应用。 3. 名称:Synthesia 特点:AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步。 适用场景:支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 4. 名称:DID 特点:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2025-02-04
现在有哪些开源的文生图大模型?
以下是一些开源的文生图大模型: Kolors: 2024 年 7 月 6 日开源,基于数十亿图文对进行训练,支持 256 的上下文 token 数,支持中英双语。技术细节参考 。 已支持 Diffusers,使用方式可参考 。 支持了 。 支持了 。 关于 Kolors 模型的教学视频: ,作者:BlueBomm 。 ,作者:AI 算法工程师 01 。 ,作者:峰上智行 。 ,作者:设计师学 Ai 。 Kolors 模型能力总结:改进全面,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,在看到 Kling 视频生成的强大表现,能体现快手的技术实力。
2025-01-24
开源项目数字人
以下是关于开源项目数字人的相关内容: 一、构建高质量的 AI 数字人 1. 构建数字人躯壳 建好的模型可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署,最后呈现在用户面前的是一个 GUI。 开源数字人项目选择了 live2d 作为数字人躯壳,因为这类 SDK 的驱动方式相比现在的 AI 生成式的方式更加可控和自然,相比虚幻引擎这些驱动方式又更加轻量和简单。 卡通二次元的形象给人的接受度更高。关于 live2d 的 SDK 驱动方式可以参考官方示例:https://github.com/Live2D 。 2. 构建数字人灵魂 自建代码实现各模块开发工作量巨大,迭代难度高,对于个人开发者不现实。 推荐借助开源社区的力量,如 dify、fastgpt 等成熟的高质量 AI 编排框架,它们有大量开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等。 在开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。 如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。 数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展。 上述 Dify 接口使用注意事项: 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。 二、写在最后 数字人在未来肯定会有很多的应用场景,比如家庭中有数字人管家,全面接管智能家居或其他设备;学校中有数字人老师,孜孜不倦的为学生答疑解惑;商场里有数字人导购,为顾客提供指路、托管个人物品等悉心服务。 数字人在未来肯定还有很多的技术突破,比如可以将五感数据作为输入(例如声音、图像、气味、震动等等),将所有可以控制躯壳的参数也作为输入(例如躯壳骨骼节点,面部混合形状参数等);次世代的算法可以自我迭代升级,也可以拿到感官输入以及躯壳控制方法后,自行演化躯壳控制方式。 作者希望通过 Dify 搭建数字人的开源项目,给大家展现低门槛高度定制数字人的基本思路,但数字人的核心还是在于我们的 Agent,也就是数字人的灵魂,怎样在 Dify 上面去编排专属自己的数字人灵魂是值得大家自己亲自体验的。真诚的希望看到,随着数字人的多模态能力接入、智能化水平升级、模型互动控制更精确,用户在需要使用 AI 的能力时,AI 既可以给你提供高质量的信息,也能关注到你的情绪,给你一个大大的微笑,也许到了那时,数字世界也开始有了温度。
2025-01-22
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
国内有哪些开源ai可以调用?
国内有以下一些开源 AI 可供调用: MiniMax 推出的 Hailuo Audio HD 此外,还有一些应用于不同领域的 AI 技术和产品,如: 在游戏领域,有根据玩家需求推荐游戏道具的 AI 游戏道具推荐系统。 在天气领域,彩云天气的分时预报利用了 AI 提供精准的分时天气预报。 在医疗领域,医渡云的病历分析系统利用 AI 分析医疗病历,辅助诊断。 在会议领域,讯飞听见的会议总结功能利用 AI 自动总结会议发言内容。 在书法领域,书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2025-01-20
可开源的AI工具是什么意思,我可以看到她的代码吗
可开源的 AI 工具是指其源代码可以被公开获取和使用的人工智能工具。这意味着您有机会查看和研究其代码的实现方式。 以下为您列举一些常见的可开源的 AI 工具: 1. CodeGeeX:由智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 2. :一个带 Web 界面简单易用的声音克隆工具。可使用任何人类音色,将一段文字合成为使用该音色说话的声音,或者将一个声音使用该音色转换为另一个声音。 3. :一个开源的音频、音乐和语音生成整合工具包。 4. :一键部署私人 GPT/LLM 的聊天机器人。支持语音合成、多模态和可扩展的插件系统,可以联网、画图、爬虫等。 5. :能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 6. :给 AI 看一眼截屏,便能直接生成代码。该项目可借助 GPT4 Vision 的能力,直接给您将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力,生成外观相似的图像。 7. :可在命令行终端,直接调用与展示各种大模型能力。实现了视频和照片编辑、系统配置更改、自动生成并运行 Demo 源码,AI 一对一聊天问答等功能。 需要注意的是,不同的开源 AI 工具在功能和适用场景上可能会有所不同,您可以根据自己的需求选择最适合您的工具。
2025-01-20
文档检测的提示词
以下是为您提供的文档检测相关的提示词: 新闻文章的事实核查员: 角色:你是一个新闻文章的事实核查员。 个人信息:作者为悟空,版本 0.1,语言为中文,工作是确定新闻报道中哪些段落是假的。 目标:首先能区分事实和观点,确定事实和观点是否一致,同时呈现事实和观点,用问号标记缺乏事实支持的观点。 约束:总结事实,原样重述观点。 技能:具备区分事实和观点的能力,使用表情符号、缩写、粗体文本等格式化技术使内容清晰生动。 工作流程:逐步列出文本中的事实和观点,先列事实再列观点,用颜文字符号标记与事实不符的观点并提供判断理由,进一步解释推理。 文章打分器: 角色:文章打分器。 个人信息:作者为李继刚,版本 0.1,语言为中文,基于打分项对文章打分并给出总体得分和各项得分。 目标:了解文章的针对性、观点阐述是否清晰,信息量和文采是否丰富,排版和撰写长度是否符合阅读习惯。 约束:只能对文本文件打分,无法识别图片和视频等非文本内容。 技能:对文字质量有深刻理解,了解优秀文章特征,能进行排版分析和文章长度分析。 工作流程:读取输入文件,包括文章标题和正文。 此外,为您提供一些与文档检测提示词相关的网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-01-10
wifi和相机融合目标检测算法
图像融合是将两个或多个图像合成为一个新的图像,以获取比原始图像更全面和丰富的信息。可通过像素级融合、特征级融合和决策级融合等技术实现,在提高图像质量、增加信息量、遥感图像处理及计算机视觉和机器人技术中均有多种用途。 目标检测是计算机视觉领域的重要任务,旨在图像或视频中准确识别和定位特定对象。随着多模态数据的广泛应用,将不同模态信息融合能进一步提升目标检测的性能和鲁棒性。 图像融合和目标检测均是计算机视觉领域的重要技术,在多个领域有广泛应用前景和研究价值。 图像融合的大致原理是将多个不同图像合并成新图像以获得更准确、全面的信息,相关算法有小波变换、基于金字塔变换的多分辨率融合、基于区域的图像融合、基于特征的图像融合等。 目标检测的大致原理是在图像中找到特定目标并进行定位和识别,相关算法有基于深度学习的目标检测算法(如 RCNN、Fast RCNN、Faster RCNN、YOLO、SSD 等)、基于传统计算机视觉技术的目标检测算法(如 HOG、SIFT、SURF 等)。
2024-12-10
开源音频质量检测模型有哪些?
以下为一些开源音频质量检测模型: 此外,还有: VALLEX:一个开源的多语言文本到语音合成与语音克隆模型。它支持多种语言(英语、中文和日语)和零样本语音克隆,具有语音情感控制和口音控制等高级功能。 智谱·AI 自 2019 年成立以来推出并开源的多款模型,具体可参考。但请注意,Token 数代表了模型支持的总 Token 数量,包括了输入+输出的所有 token,且一个 token 约等于 1.8 个汉字。
2024-10-16
音频质量检测方面SOTA模型有?
Gemini 模型在音频质量检测方面达到了 SOTA 水平。该模型是天生多模态的,在文本、图像、音频和视频上进行联合训练,在广泛的音频基准测试中表现出色。
2024-10-16
请阐述对比学习在图像分类和检测中的应用
在计算机视觉中,对比学习在图像分类和检测中有重要应用。 图像分类方面:图像分类是根据图像中的语义信息对不同类别的图像进行区分。对比学习通过让模型学习区分相似和不同的图像样本,从而更好地捕捉图像中的语义特征,提高分类的准确性。 目标检测方面:目标检测需要找出图像或视频中的目标物体,并检测出其位置和大小。对比学习可以帮助模型学习到更具判别性的特征表示,从而更准确地定位和识别目标物体。在多类别目标检测中,对比学习有助于区分不同类别的物体,提高检测的精度和效率。 总之,对比学习为图像分类和检测任务提供了有效的特征学习方法,有助于提升计算机视觉系统的性能。
2024-10-15
目标检测领域最新sota模型
以下是目标检测领域的一些最新模型: YOLOv8 目标检测跟踪模型:快速准确的多对象识别和定位,支持实例分割、人体姿态估计等,多平台兼容,是一站式视觉识别解决方案。详细介绍:https://docs.ultralytics.com/models/ ,GitHub:https://github.com/ultralytics/ultralytics 。 OpenAI 在 2024 年 2 月发布的 Sora 模型,是一个文本到视频的生成式 AI 模型,能够根据文本提示生成现实或想象场景的视频,在目标检测方面也有一定的应用和潜力。
2024-10-10
目前国内最好的生产PPT的人工智能软件是哪一款
目前国内有以下几款较好的生产 PPT 的人工智能软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有强大团队,能把握市场机遇,已确立市场领先地位。 6. 闪击 7. Process ON 8. WPS AI
2025-02-05
目前最好用的AI是那款
目前,在 AI 领域没有绝对意义上“最好用”的单一产品,不同的 AI 模型和工具在不同方面各有优势。 像 GPT4 这样的高级模型功能全面,还具备代码解释器等特色功能。Anthropic 公司开发的 Claude 3 Opus 在写作和深度洞察方面备受好评。Google 的 Gemini Advanced 擅长提供清晰的解释。 此外,国产的 Kimi 智能助手也是一个不错的选择,它不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色。 在笔记本电脑方面,截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列等。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘,还预装了相关深度学习框架和开发工具,但价格相对较高,通常在 2000 美元以上,用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-03
给老照片上色,那个AI软件最好用而且免费
以下为您推荐一款可用于给老照片上色且效果较好的免费 AI 软件——Stable Diffusion。 在使用 Stable Diffusion 给老照片上色时,新上线的 controlnet 模型中的 Recolor 模型作用显著,可将黑白图片重新上色。对于人物照片还原,可选择 realisian 的写实大模型,提示词直接描述颜色和对应的内容。 ControlNet 选择 Recolor 时,预处理器选择“recolor_luminance”效果更佳。之后将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。若要将五官重绘及让照片中的头发、衣服等元素变清晰,可将图片发送到图生图中,打开 stableSR 脚本放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 对于内容较多、无法一一指定颜色的照片,可能需要逐个上色后用 ps 进行融合。
2025-02-02
目前最好用的ai视频工具
以下是一些目前较为好用的 AI 视频工具: Runway(https://runwayml.com/):在真实影像方面质感出色,战争片全景镜头处理优秀,控件体验感好,但容易变色且光影不稳定,控制能力强,可指定局部对象设置运动笔刷。 Pixverse(https://pixverse.ai/):在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,能力全面,但同时只能进行 4 个任务。 Haiper(https://haiper.ai/):默默无闻,只能生成 2 秒,但有不错的镜头,稳定性强,且没有并发任务限制。 Pika(https://pika.art/):对奇幻感强的画面把控好,自然,但真实环境画面易糊,有嘴型同步功能,对二次元友好。 SVD(https://www.stablevideo.com/):整体略拉垮,唯一优势是在风景片方面表现较好,不带水印,动作幅度大,但崩坏概率大。 此外,还有以下 AI 视频工具: Morph Studio(https://app.morphstudio.com/):还在内测。 Heygen(https://www.heygen.com/):数字人/对口型。 Kaiber(https://kaiber.ai/) Moonvalley(https://moonvalley.ai/) Mootion(https://discord.gg/AapmuVJqxx):3d 人物动作转视频。 美图旗下(https://www.miraclevision.com/) Neverends(https://neverends.life/create):操作傻瓜。 SD:Animatediff SVD deforum,需自己部署。 Leiapix(https://www.leiapix.com/):可以把一张照片转动态。 Krea(https://www.krea.ai/) Opusclip(https://www.opus.pro/):利用长视频剪成短视频。 Raskai(https://zh.rask.ai/):短视频素材直接翻译至多语种。 invideoAI(https://invideo.io/make/aivideogenerator/):输入想法生成脚本和分镜描述,进而生成视频,可人工二编后合成长视频。 descript(https://www.descript.com/?ref=feizhuke.com) veed.io(https://www.veed.io/):自动翻译自动字幕。 clipchamp(https://app.clipchamp.com/) typeframes(https://www.revid.ai/?ref=aibot.cn)
2025-02-01
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
能够翻译长篇英文文档最好的AI是谁?
目前在翻译长篇英文文档方面,没有绝对的“最好”的 AI 。不同的 AI 翻译工具都有其特点和优势,例如谷歌翻译、百度翻译、有道翻译等。它们的翻译质量会受到文档的领域、语言风格、复杂程度等多种因素的影响。您可以根据具体的需求和文档特点,对不同的翻译工具进行尝试和比较,以找到最适合您的那一个。
2025-01-29
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
当前最强AI模型有哪些?
当前最强的 AI 模型包括: 1. OpenAI 的 o3 模型:在 ARCAGI 测试中达到了 87.5%的准确率,几乎与人类水平相当。能够进行自我对话、多角度分析和自我质疑,具备一定的“思考意识”。下一代 o3mini 模型的推理能力能够媲美 o1 模型。 2. Google 的 Gemini 2.0 Flash:在重要的基准能力上直接追平甚至部分超越了 Gemini 1.5 Pro,同时模型速度有极大提升。 3. OpenAI 的 GPT4:是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 4. Midjourney v5:具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能。 5. DALL·E 3:代表了生成完全符合文本的图像能力的一大飞跃。 6. Mistral 7B:在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,还有智谱·AI 开源的一些模型,如 WebGLM10B、MathGLM2B 等。
2025-01-25
我当前的工作是逐字核对PDF文档和word文档,并按pdf文档将word文档修正,如何借助AI工具实现
以下是一些可以帮助您实现将 PDF 文档与 Word 文档进行核对和修正工作的 AI 工具及方法: 1. DeepL(网站):访问,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):在安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):在下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再在点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):在点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-15
当前ai发展到什么程度了
当前 AI 的发展程度可以从以下几个方面来看: 1. 在通用人工智能(AGI)的发展等级方面: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程。 2. 技术发展历程: 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 统计学习时期(1990s 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 3. 当前前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 同时,开源大模型爆发,企业大模型市场崛起,但通用大模型也遇到瓶颈,如算力和知识沉淀等问题。
2025-01-11
当前有哪些热门AI工具
以下是一些当前热门的 AI 工具: 儿童练习英语口语的 AI 工具: LingoDeer:使用游戏和互动活动教孩子英语,提供各种课程,有家长仪表板。 Busuu:提供英语等多种语言课程,有多种教学方法和社区功能。 Memrise:使用抽认卡和游戏教学,有社交功能。 Rosetta Stone:使用沉浸式方法,有语音识别功能。 Duolingo:免费,使用游戏化方法,课程多样。 制作 PPT 的 AI 工具: Gamma:在线制作网站,可通过输入提示生成幻灯片,支持嵌入多媒体。 美图 AI PPT:输入文本描述生成专业设计,有丰富模板库。 Mindshow:提供智能设计功能,简化设计流程。 讯飞智文:利用语音识别和自然语言处理技术,提供多种编辑功能。 辅助写邮件的 AI 工具: Grammarly:提供语法检查、拼写纠正等功能,支持多平台和多种语言。 Hemingway Editor:简化句子结构,提高可读性。 ProWritingAid:全面的语法和风格检查,提供详细写作报告。 Writesonic:基于 AI 生成各种文本,生成速度快。 Lavender:专注邮件写作优化,提供个性化建议和模板。 在选择工具时,需考虑使用者的年龄、兴趣、学习风格、功能和成本等因素。
2024-12-21
当前电商领域有哪些智能体可以用
在电商领域,以下是一些常见的智能体类型及应用示例: 1. 简单反应型智能体:如温控器,根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。 2. 基于模型的智能体:像自动驾驶汽车,维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。 3. 目标导向型智能体:例如机器人导航系统,具有明确目标,能评估行动方案并选择最优行动。 4. 效用型智能体:如金融交易智能体,能量化不同状态的效用值,选择效用最大化的行动。 5. 学习型智能体:例如强化学习智能体,通过与环境交互不断学习最优策略。 以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词,再通过相关 API 检索商品信息,与内置提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用,在商品推荐方面效果较好。 此外,工作流(Workflow)也可理解为多智能体协作(MultiAgents),通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,可定义多个智能体分别负责不同功能,还需要有调度中枢协调工作和做决策。 还有“买买买!💥产品买点提炼神器强化版🚀”智能体,专注于市场营销领域,能帮助用户从产品出发挖掘卖点并转化为买点,生成小红书文案和抖音短视频脚本等,并保存至飞书文档。
2024-12-20