DeepSeek 是一家来自中国杭州的人工智能创业公司。
其在 2024 年 12 月发布的大语言模型 DeepSeek-V3 引起了广泛关注。该模型以相对较低的成本和较少的硬件资源,在多项评测中取得了优异成绩,与顶级开源和闭源模型不相上下。
HiDeepSeek 是为解决 AI 回答过程不透明问题而设计的工具。它能让 AI 在给出答案时展示思考过程,如先说“让我想想...”再逐步展开分析,最终给出结论。在技术层面,通过特别规则要求 AI 像人类自然思考,可提出疑问、修正错误等。
例如老师使用时,AI 会先分析教学目标、思考学生可能遇到的困难,再设计教学步骤,过程清晰展示。总的来说,HiDeepSeek 让 AI 思维过程透明,虽为模拟,但有助于更好理解和使用 AI。
此外,用 Coze 做了效果对比测试,使用 HiDeepSeek 可通过以下步骤:
其设计思路包括:
完整提示词版本为 v1.3,特别鸣谢了李继刚的【思考的七把武器】提供思考方向,以及 Thinking Claude 和 Claude 3.5 Sonnet。
当我们使用AI工具时,经常会遇到这样的困惑:AI给出的答案虽然看起来不错,但我们很难理解它是如何得出这个结论的。这就像是一个黑盒子,输入问题后直接得到答案,中间的思考过程完全不可见。这种不透明性不仅影响了我们对AI的信任,也让我们难以判断答案的可靠性。HiDeepSeek就是为了解决这个问题而设计的工具。它的核心目标很简单:让AI像人类交流时那样,在给出答案的同时,也展示出思考的过程。举个例子,当你问一个复杂的问题时,AI会先说"让我想想...",然后逐步展开它的分析过程,最后才给出结论。这样的过程不仅让答案更可信,也能帮助我们发现AI可能存在的误解或偏差。在技术层面,HiDeepSeek通过一套特别的规则来实现这个目标。它要求AI在思考时要像人类一样自然,可以提出疑问,可以修正错误,甚至可以说"等等,我想到了一个更好的方法"。这种设计让AI的回答不再是冰冷的结论,而是一个可以跟踪、可以理解的思考过程。比如说,当一个老师使用HiDeepSeek来准备教案时,AI不会直接给出一个教学方案,而是会先分析教学目标,思考学生可能遇到的困难,然后才逐步设计教学步骤。这个过程中的每一个想法、每一个考虑都会清晰地展示出来,让老师能够根据自己的经验来判断这个方案是否合适。总的来说,HiDeepSeek是一个让AI思维过程变得透明的工具。它不是要让AI变得更聪明,而是要让AI的思考过程变得更容易理解。虽然这种"思维"实际上是一种模拟,但它确实能帮助我们更好地理解和使用AI,让AI成为更好的助手而不是神秘的黑盒子。
中国杭州的人工智能创业公司DeepSeek是近一段时间硅谷的AI研究者和开发者的心魔。它在2024年12月发布的大语言模型DeepSeek-V3被认为实现了诸多的不可能:550万美元和2000块英伟达H800 GPU(针对中国市场的低配版GPU)训练出的开源模型,多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405B等顶级开源模型,亦与GPT-4o和Claude 3.5-Sonnet这样世界顶级的闭源模型不相上下——而训练后者的成本保守估计也要数亿美元和几十万块最强劲的英伟达H100。可以想象它在人工智能界引发的震撼——尤其是在AI领域的研究人员、创业者、资金、算力和资源最扎堆的硅谷。不少硅谷AI领域的重要人士都不吝惜对DeepSeek的称赞,比如OpenAI联合创始人Andrej Kaparthy和Scale.ai的创始人Alexandr Wang。尽管OpenAI CEO Sam Altman发了一条疑似影射DeepSeek抄袭借鉴其它先进成果的推文(很快就被人回怼“是指把Google发明的Transformer架构拿过来用么?),但DeepSeek收获的赞誉确实是广泛而真诚的,尤其是在开源社区,开发者用脚投票。
用Coze做了个小测试,大家可以对比看看[e8c1a8c3012fedad10dc0dfcc8b1e263_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/Jz9cbKxDbocGtIxXFFEcdiHjnRc?allow_redirect=1)[heading1]如何使用?[content]Step1:搜索www.deepseek.com,点击“开始对话”Step2:将装有提示词的代码发给DeepseekStep3:认真阅读开场白之后,正式开始对话[heading1]设计思路[content]1.将Agent封装成Prompt,将Prompt储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担2.通过提示词文件,让DeepSeek实现:同时使用联网功能和深度思考功能3.在模型默认能力的基础上优化输出质量,并通过思考减轻AI味,增加可读性4.照猫画虎参考大模型的temperature设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改5.用XML来进行更为规范的设定,而不是用Lisp(对我来说有难度)和Markdown(运行下来似乎不是很稳定)[heading1]完整提示词[heading2]v 1.3[heading1]特别鸣谢[content]李继刚:【思考的七把武器】在前期为我提供了很多思考方向Thinking Claude:这个项目是我现在最喜欢使用的Claude提示词,也是我设计HiDeepSeek的灵感来源Claude 3.5 Sonnet:最得力的助手