Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui

Answer

ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息:

  • 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。
  • 优劣势:
    • 优势:
      • 对显存要求相对较低,启动速度快,出图速度快。
      • 具有更高的生成自由度。
      • 可以和 webui 共享环境和模型。
      • 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。
      • 生成的图片拖进后会还原整个工作流程,模型也会选择好。
    • 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。
  • 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI
  • 安装部署:
    • 电脑硬件要求:
      • 系统:Windows7 以上。
      • 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。
      • 硬盘留有足够的空间,最低 100G 起步(包括模型)。
      • 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。
    • 下载并安装所需要环境:
      • 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。
      • 安装 Python:https://www.python.org/downloads/release/python-3119/ ,安装的时候选中“将 Python 添加到系统变量”。
      • 安装 VSCode:https://code.visualstudio.com/Download 。
      • 安装 Git:https://git-scm.com/download/win 。
      • 安装 CUDA:https://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
    • 安装地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。
    • 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\custom_nodes 。
    • 模型存放目录:
      • 大模型:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\checkpoints 。
      • Lora:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\loras 。
      • Vae:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\vae 。
    • 模型共用:已经安装了 SD-WebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

1、安装部署ComfyUI 副本

地址:https://github.com/comfyanonymous/ComfyUI可以下载安装包也可以直接Git clone https://github.com/comfyanonymous/ComfyUI.git或者下载安装包file:ComfyUI.ziphttps://github.com/comfyanonymous/ComfyUI下载安装包或者点击链接下载并解压至本地除C盘外的任意盘。然后找到文件名称为run_nvidia_gpu的文件双击并启动。启动完成即进入基础界面。[heading1]五、节点存放目录[content]comfyUI的节点包括后面安装的拓展节点都存放在本目录下D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\custom_nodes[heading1]五、模型存放目录[content]1、大模型:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\checkpoints2、Lora:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\loras3、Vae:D:\COMFYUI\ComfyUI_windows_portable\ComfyUI\models\vae[heading1]六、模型共用[content]已经安装了SD-WebUI的同学可以通过修改文件路径和WebUI共用一套模型即可,这样就不用重复下载模型了。找到你已经安装好的ComfyUI目录文件下的extra_model_paths.yaml.example文件,将后缀.example删除,然后右键用记事本打开,[heading1]七、快捷键

1、安装部署ComfyUI 副本

今天主要介绍StableDiffusion的另一种UIComfyUI的实际操作方法,完全从0开始安装。以及如何在ComfyUI中使用SDXL模型,希望通过本文能够降低大家对StableDiffusion ComfyUI的学习成本,更快速的体验到AIGC图像生成的魅力。[heading1]一、电脑硬件要求[content]1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。4.注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。5.下载并更新Nvidia显卡驱动下载地址https://www.nvidia.cn/ geforce/drivers/[heading1]二、下载并安装所需要环境[content]依次下载并安装python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。1.安装Python https://www.python.org/downloads/release/python-3119/file:python-3.11.9-amd64.exe安装的时候选中“将Python添加到系统变量”1.安装VSCode https://code.visualstudio.com/Downloadfile:VSCodeUserSetup-x64-1.90.0.exe3、安装Git https://git-scm.com/download/winfile:3-Git-2.39.2-64-bit.exe4、安装CUDAhttps://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_networkfile:cuda_12.2.0_536.25_windows.exe

Others are asking
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境:依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-01-23
如何学习comfyui
以下是一些学习 ComfyUI 的途径和资源: 1. 官方文档:ComfyUI 官方文档提供了使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有一篇详细的 ComfyUI 入门教程,适合初学者,详细介绍了其特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了一系列涵盖从新手入门到精通各个阶段的视频教程,可在找到。 此外,还有 ComfyUI 共学快闪的飞书学习群,其中包含了众多如 Stuart 风格迁移、红泥小火炉基础课程等各类课程和讲解,如郑个小目标针对于某个插件的深入讲解、波风若川报错解决等。 另外,有人因为以下原因学习使用 ComfyUI:更接近 SD 的底层工作原理;自动化工作流,消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,还能根据定制需求开发节点或模块。例如,有人为了工作室获取抠图素材的需求,基于创建了工作流,不仅能用于绿幕素材抠图,还能自动生成定制需求的抠图素材,全程仅需几秒。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ComfyUI_LayerStyle
ComfyUI_LayerStyle 相关内容如下: 加载模型部分: 下好工作流中的所需三张图片“SeasonYou_Reference、BG、MASK”以及上传自己所需的照片到 Input 部分。右上角放自己的人像图片(非人像会报错提示“no face detected”)。 对于 vae 加载器部分,选择 xl 版本(因为大模型用的 xl)的 vae 即可。 对于 ipadater 部分,倘若加载器部分报错说 model 不存在,将文中画圈部分修改调整到不报错。 Pulid 部分,除了下载好对应的节点以及参考官方网站最下面的安装对应要求外,还要注意对应安装一些内容,具体要求可查看云盘中命名为“pulid 插件模型位置.png”及对应的云盘链接:PulID 全套模型 链接:https://pan.baidu.com/s/1ami4FA4w9mjuAsPK49kMAw?pwd=y6hb 提取码:y6hb ,否则将会报错。 爆肝博主 ZHO 的更新记录: 3 月 7 日:ComfyUI 支持 Stable Cascade 的 Inpainting ControlNet,ComfyUI 作者在示例页面给出了说明和工作流:https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/ ,博主自己也整理了一版,分享在:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO ,说明第二个 inpainting+composite 是将原图帖回到重绘之后的效果,是非必要项,按需使用。 3 月 6 日:国内作者把 ps 很多功能都迁移到了 ComfyUI 里,项目是:https://github.com/chflame163/ComfyUI_LayerStyle 。最新版 ComfyUI 支持了一系列图像形态学处理,包括 erode 腐蚀(去除小噪点/分离相邻对象)、dilate 膨胀(填补小洞/连接临近对象)、open 开(先腐蚀后膨胀)、close 闭(先膨胀后腐蚀)、gradient 梯度(膨胀与腐蚀之差)、top_hat 顶帽(原图与开之差)、bottom_hat 底帽(原图与闭之差)。使用方法为:1)更新 ComfyUI;2)右键 image/postprocessing/ImageMorphology;3)接上图像输入和输出即可。
2025-01-15
在comfyUI中可以接入哪些api,又和3D相关的吗
在 ComfyUI 中可以接入以下与 3D 相关的 API: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材,并直接应用于游戏中,无需后期处理。体验地址:https://cube.csm.ai ,https://x.com/xiaohuggg/status/1763758877999587757?s=20 2. Move AI 推出的 Move API:可以从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。链接:https://move.ai/api ,https://x.com/xiaohuggg/status/1761590288576061573?s=20 3. ComfyUI 3D Pack 引入 3D 图像处理:可以快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。链接:https://github.com/MrForExample/ComfyUI3DPack/tree/main ,https://x.com/xiaohuggg/status/1755824687811346514?s=20 此外,ZHO 博主有关于 ComfyUI 的更新记录: 1. 4 月 18 日,ComfyUI Stable Diffusion 3 API 已更新为 V1.5 版,图生图和 SD3 Turbo 都可以正常使用,但 SD3 图生图模式不支持选择比例,SD3 Turbo 模型不支持负面提示词。使用方法是先申请 API,然后填入 config.json 文件即可(每账户 25 免费积分),SD3 每张图 6.5 积分(比较贵)。项目地址:https://github.com/ZHOZHOZHO/ComfyUIStableDiffusion3API ,SD3 API ComfyUI 节点测试成功。 2. 4 月 17 日,Stability AI 刚刚发布了 Stable Diffusion 3 和 Stable Diffusion 3 Turbo,现在已经可通过 Stability AI 开发者平台 API 使用,SAI 计划在不久的将来通过会员资格提供模型权重。详情:https://bit.ly/3W43FjY
2025-01-14
在comfyUI中可以接入哪些节点
在 ComfyUI 中可以接入以下类型的节点: 1. 输入节点: 文本提示节点:用于输入生成图像的文本描述。 图像输入节点:用于输入基础图像进行二次生成。 噪声节点:用于输入初始噪声图像。 2. 处理节点: 采样器节点:选择图像生成所使用的采样器。 调度器节点:选择图像生成所使用的调度器。 CFG Scale 节点:调整引导式采样的强度。 步数节点:设置图像生成的迭代步数。 3. 输出节点: 图像输出节点:显示生成的最终图像。 4. 辅助节点: 批处理节点:支持批量生成多个图像。 图像变换节点:提供图像旋转、翻转等功能。 图像融合节点:可以将多个图像合并成一个。 此外,还有一些特定的节点插件,如: 1. PuLID 节点插件: model:使用预训练的基础文本到图像扩散模型,如 Stable Diffusion。 pulid:加载的 PuLID 模型权重,定义 ID 信息如何插入基础模型。 eva_clip:用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型。 face_analysis:使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部。 image:提供的参考图像用于插入特定 ID。 method:选择 ID 插入方法,如“fidelity”(优先保真度)、“style”(保留生成风格)和“neutral”(平衡两者)。 weight:控制 ID 插入强度,范围为 0 到 5。 start_at 和 end_at:控制在去噪步骤的哪个阶段开始和停止应用 PuLID ID 插入。 attn_mask:此选项用于提供灰度掩码图像,以控制 ID 自定义的应用位置,但并不是必需输入,而是可选输入。 Advanced Node:提供了高级节点,可以通过调整 fidelity 滑块和 projection 选项进行更精细的生成调优。 2. 中文提示词输入相关节点: 安装完成后,在【新建节点】【Alek 节点】下,有【预览文本】、【绘画】、【姿态】、【clip 文本编码器】和【翻译文本】这五个节点。 【clip 文本编码器(翻译)】可代替自带的【clip 文本编码器】,直接输入中文。但引用负向 embedding 时,文件夹路径不能有中文。 【翻译文本】节点可代替【元节点】,在 sdxl 流程中,当需要将文本信息单独列出来时使用。 【预览文本】节点可连接到【翻译文本】检查翻译是否正确。 如果翻译失效,可双击“embedded_instail”进行安装,然后用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,即可正常翻译。
2025-01-14