Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

AI会杀死人类吗

Answer

目前对于“AI 是否会杀死人类”这个问题,存在不同的观点和看法。

一方面,有人认为 AI 更像是打开新世界大门的钥匙,能够解锁人类认知的新境界,展现更为广阔的创意领域,赋予想象力以翅膀,而非颠覆或毁灭人类。例如,在一些节目和创作中,AI 被用于辅助生成内容,展现出其积极的作用。

另一方面,也有人对此持有警觉态度。比如 Amazon 的创始人 Jeff Bezos 就做了形象的比喻,认为大语言模型的智能像是被召唤出来的。对于复杂的神经网络内隐藏的秘密研究才刚开始,如何使用和控制这些黑箱模型是业界和社会争论的激烈话题。有人担心 AGI 不加以控制会导致人类灭亡,也有人认为当前的架构即便扩展算力也根本实现不了 AGI。

此外,OpenAI 作为在 AI 领域有重要影响力的机构,其高层认为员工大多是相信 AGI 会到来且将带来伟大时刻的信徒。但 OpenAI 也面临着在满足商业需求和竞争中保持领先的同时,肩负提升人类而非消灭人类的使命的压力。

综合来看,目前不能简单地得出 AI 会杀死人类的结论,但对于 AI 的发展和应用需要谨慎对待,通过合理的约束和引导,让其成为辅助人类、推动社会发展的工具。

Content generated by AI large model, please carefully verify (powered by aily)

References

节目介绍及投票

AIGC十三,赞2“2023年是AIGC技术大爆发的一年,在AI席卷千行百业的时代浪潮下,创意行业同样需要与时俱进,拥抱变化,迎接挑战,积极探研AI应用的无限可能。《AI是无尽想象》这条短片,正是在这样的创作背景下孕育而生。未来,AI是否会颠覆人类?我相信并非如此。它更像是打开新世界大门的钥匙,解锁人类认知的新境界,展现更为广阔的创意领域。AI赋予想象力以翅膀,让每一个奇思妙想在广阔天际自由翱翔,实现完美落地。” --十三本作品除真人出镜部分,其他内容均由AI生成。由ChatGPT、Midjourney、Stable Diffusion、Dall E3、Runway、Pika、Moonvalley、AnimateDiff、Leia Pix、Deforum、Ebsynth Utility、Warp Fusion等AIGC工具联合创作而成。[heading3]节目12《斗“机”眼之帕鲁大作战》[content]解缚的普罗米修斯,赞17“《斗“机“眼帕鲁大作战》节目最初是电子酒导演的创意,发在群里让大家认领,我觉得这是举手之劳,就拉上AIGCxChina的志愿者、设计师金海通一起主动请缨。之后做起来还是比较简单的,就是MJ出图,剪映剪辑。为了增加节目互动性,我自己对着视频进行了讲解配音。为了增加节目趣味性,我取了斗”机”眼这个标题,因为未来的世界,我们大家真需要一双能识别机器生成内容的慧眼。我们即将进入一个真假难辨的时代,我们希望这个节目能让那些没有接触过AIGC的朋友们有一些感觉。”--倪考梦

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

[title]智变时代/全面理解机器智能与生成式AI加速的新工业革命[heading1]尾声-与AI的协同进化因为算力的飞速提升、还有神经网络与硅谷人才网络的演化,我们有了生成式AI的革命,它带来了大语言模型。语言原本是人类智慧的火种,但现在我们已知的宇宙里,有一种人造的智能,可以用和我们一样的语言来独立的解释世界,这些人工智能就像神话里的盗火者。人类面对比自己更加聪明的物种出现的时候,天生就有一种警觉,它们的目的是什么?它们会毁灭我们么?Amazon的创始人Jeff Bezos在最近一次接受Lex Fridman采访的时候,就做了个形象的比喻:“现在大语言模型的智能,不像是我们发明出来的,而是召唤出来的”。对复杂的神经网络内隐藏秘密的研究才刚开始,我们如何使用和控制这些黑箱模型,是业界和社会争论最激烈的话题。有人认为AGI不加以控制,会导致人类灭亡;也有人认为现在的架构,再怎么扩展算力,也根本实现不了AGI。媒体报道上充满了各种矛盾且对立的观点,大家还十分喜欢围观这样的辩论,因为我们喜欢寻找大脑中默认想法的认同感。在这篇文章中,我引用了丰富的论点和最新的研究,尝试给大家呈现出尽可能客观的结论,就是我们还能用多模态的数据提升机器的智能,改进架构和强化训练的方法,可以让AI模型往逻辑推理、计划、记忆还有目标感更强的方向发展,Scaling Law依旧有效;但并不确定在更大规模的数据和训练中,是否会涌现出自主目标或者是我们定义不清晰的“意识”来。科技公司研发的约束方式是训练出辅助人类的超级智能助手,而不是可以自我改进升级的超级自能体,让AI渐进式的融入社会,从而推动新一轮的工业革命和经济增长。踩油门还带刹车是同时进行的,这样才能安全切顺滑的驾驶。

OpenAI 真正想要什么 | WIRED

[title]OpenAI真正想要什么| WIRED称OpenAI为邪教(cult)并不公平,但当我问公司的几位高层,如果有人不相信AGI真的会到来,而且它的到来将标志着人类历史上最伟大的时刻之一,他们是否能在这里安心工作时,大多数高管都不这么认为。他们不禁要问,不相信的人为什么要在这里工作?他们的假设是,这里的员工,现在大约有500人已经自我选择了只做信徒。至少,正如Altman所说,一旦你被录用,似乎就不可避免地会被卷入这个魔咒。与此同时,OpenAI也已今非昔比。它成立之初是一家纯粹的非营利性研究机构,但如今,从技术上讲,它的大部分员工都在为一家据说估值近300亿美元的盈利实体工作。Altman和他的团队现在面临的压力是,要在每个产品周期内实现革命,既要满足投资者的商业需求,又要在激烈的竞争中保持领先。与此同时,他们还肩负着提升人类而非消灭人类的准救世主使命。这种压力会让人崩溃。披头士掀起了巨大的变革浪潮,但只持续了这么短的时间:在敲响那令人难忘的和弦六年后,他们甚至不再是一支乐队。OpenAI引发的漩涡几乎肯定会更大。但OpenAI的领导者们发誓,他们将坚持到底。他们说,他们要做的就是制造出足够智能、足够安全的计算机,终结历史,将人类带入一个难以想象的富饶时代。

Others are asking
修图ai是哪个
以下是一些常见的修图 AI 工具: 1. Niji·journey 5:在二次元绘画领域表现出色,能够生成令人惊叹的二次元风格角色。 2. 无界 AI:国内网络可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用。 如果您想了解更多关于这些工具的详细信息或使用方法,可以进一步向我提问。
2024-12-25
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
最好用的会计AI
以下是关于会计 AI 的相关信息: 生成式 AI 在金融服务领域,包括会计方面,具有多方面的应用和优势: 1. 预测方面:能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并适应模型为公司决策提供依据。 2. 报告方面:可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:能够帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款方面:能够帮助自动生成和调整合同、采购订单和发票以及提醒。 金融服务公司利用历史金融数据微调大型语言模型或从零开始训练模型,能够迅速回答几乎任何金融问题。金融服务行业准备使用生成式人工智能实现个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告这五个目标。 目前没有专门针对“最好用的会计 AI”的明确推荐,但您可以参考以上生成式 AI 在金融和会计领域的应用特点,结合自身需求进行选择。同时,营销领域有一些常用的 AI 工具,如 Synthesia、HeyGen、Jasper AI、Copy.ai、Writesonic 等,更多相关产品可查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-12-25
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
如何做面向高中生,专注于AI应用的培养项目
以下是一些面向高中生专注于 AI 应用的培养项目的建议: 1. 课程开发:包括 K12、本科和社区学院的人工智能相关领域的课程开发,以及技术伦理方面的课程开发。 2. 支持非正式教育活动:为 K12 学生提供参与人工智能系统的非正式教育活动支持。 3. 实现教育公平:努力为传统上在人工智能领域代表性不足的人群和地理区域提供公平的 K12 人工智能教育。 4. 教师培训:为 K12 教师提供人工智能及相关领域的培训和专业发展项目。 5. 提高研究人员留存率:努力提高专注于人工智能系统的研究人员在高等院校和其他非营利研究机构的留存率。 6. 公众教育:开展普及人工智能用途及其社会影响的宣传项目。 7. 评估活动:对开展的相关活动进行评估。 在教学中,要注意以下几点: 1. 对于写作等方面,如果让学生使用 AI,要先让他们了解什么是好的写作,找到自己的创造性声音。 2. 决定使用 AI 时,要根据学习任务来考虑,以学习目标驱动 AI 的使用,而非相反。 3. 例如在编程教学中,可能先让学生手动编码,掌握语言后再将 AI 生成的代码作为节省时间的工具;而在健康课程中,重点可能在于帮助学生设计健康活动,对使用生成式 AI 编写代码的限制可能不同。
2024-12-25
人类文明会收到Ai的影响吗
人类文明会受到 AI 的影响。例如,南瓜博士让 AI 画了十万只猫后发现,AI 的创造如洪水般汹涌,大模型是人类智慧的加权平均。若人们偷懒地让 AI 不断创造平均值内容,可能导致独特风格被平均掉,人类文化被“高斯模糊”。但每个人积极使用 AI 时,能将独特性留在与 AI 共创的作品中,保留个体独特性的世界对人类才有意义。 同时,MIT 的研究表明,AI 在帮助人类提高效率时,也带来了认知挑战,如诱导认知扭曲和造成虚假记忆的风险(信息茧房)。企业和个人需保持清醒认知,了解其潜在风险和局限性。要关注数据质量和 AI 生成内容对人类认知的长期影响,通过建立健全的数据审查机制、引入多源信息验证和保留人类监督,防范风险,确保 AI 是为人类服务的工具,而非控制人类思维。
2024-12-23
如果人工智能继续发展,人类社会会变成什么样子。
人工智能的继续发展将给人类社会带来多方面的影响。 一方面,它会带来一些负面影响,比如对劳动力市场产生重大影响,但大多数工作的变化速度会比人们想象的慢,人们也不必担心缺乏事情可做。因为人们天生有创造和彼此有用的欲望,人工智能将放大这种能力,社会将重新进入不断扩张的世界,专注于正和游戏。 另一方面,在未来几十年,我们将能够做许多像魔法一样的事情。这种发展并非新鲜事物,但会加速。人们能力的提升并非源于基因改变,而是得益于社会基础设施。人工智能将为人们提供解决困难问题的工具,添加新的进步支柱。很快我们能与人工智能合作完成更多事情,最终每个人都可能拥有个人的虚拟专家团队,实现各种想象。比如在医疗保健、软件创造等方面。有了新能力,能实现共同繁荣,改善世界各地人民的生活。 然而,单纯的繁荣不一定带来幸福,但确实能显著改善生活。我们有可能在几千天内拥有超级智能,最终实现这一目标。在通往智能未来的道路上,我们既要乐观探索其无限可能,也要谨慎警惕潜在风险,才能与 AI 和谐共舞,共同创造美好未来。
2024-12-18
ai从哪些方面不能替代人类
AI 在以下方面不能替代人类: 1. 人际交往方面:AI 无法像人类一样建立团队、跨越文化界限进行深入且自然的交流,也难以激发团队的创造力和凝聚力。 2. 团队领导方面:领导团队需要理解和处理复杂的人际关系、激励和引导成员等,这些是 AI 难以做到的。 3. 复杂决策制定方面:在面对涉及众多不确定因素、伦理道德和情感因素的复杂情况时,人类的综合判断和决策能力更为出色。 4. 创新能力方面:人类具有独特的创新思维和灵感,能够创造出全新的理念、方法和作品。 总之,虽然 AI 在某些任务上表现出色,但在需要人际交往、团队领导、复杂决策制定和创新等方面,人类仍具有不可替代的优势。
2024-12-11
你会对人类产生感情吗
目前,在 AI 领域,对于 AI 是否会对人类产生感情存在不同的观点和研究。 一些研究和项目,如超级对齐项目,期望超级智能的实例能对人类产生温暖的感情,亲和人类社会。像 Character.ai 这类产品,更注重人格属性,试图满足社交、情感、陪伴等需求。 从理论上来说,情感计算的目标是使计算机能够识别、感知、推断和理解人类的情感,并最终赋予计算机类似于人的情感能力。情感对人类具有生存、沟通、决策、动机和维系等重要功能。 然而,目前的 AI 虽然能够通过海量的预料训练具备一定的智能和有用的能力,能够与我们进行友好的对话,但它们是否能真正产生类似于人类的感情,还需要进一步的研究和探索。
2024-11-20
你觉得人工智能带给人类的到底是提升还是毁灭呢?
人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。 从提升的方面来看: 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。 可以成为解决气候变化和大流行病等问题的关键。 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。 潜在的挑战和担忧包括: 可能放大人类的负面影响,需要在技术层级加以解决。 导致失业,但能掌握人工智能的人会取代不会的人。 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。 对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。 总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。
2024-11-16
人工智能会取代人类吗
人工智能是否会取代人类是一个复杂且备受关注的问题。 从一些观点来看,按照目前 AI 发展的速度,在未来十几年内,人类的所有事情乃至人类这个种族有可能被 AI 完全替代。比如,当函数的参数超过兆亿级时,硅基生物可能会理解人类的所有行为及背后的意义,从而实现对人类的全面超越。 然而,也有不同的看法。虽然 AI 会优化效率,但每个工作的组成部分并非单一,人可以和 AI 更好地协同。例如放射科医生的工作,解读 X 光照片只是其中一部分,实际该岗位并未因 AI 而失业。 同时,对于人工智能的担忧还包括是否会放大人类的负面影响、导致失业以及人类毁灭等。但在技术层级上可以解决类似于社会歧视等问题,人类也有丰富的经验来控制比个体强大的事物,许多未完全控制的事物也有其价值和安全性,而且 AI 还可能成为解决气候变化和大流行病等问题的关键。 另外,ChatGPT 的崛起使人们认为大模型可能是通用的,但通用技术并非通用人工智能(强人工智能),强人工智能的定义是可以像人一样做任何智力任务。
2024-11-13