目前较为先进的算法模型包括:
大模型具有以下特点:
在模型架构方面:
在模型部署方面: 由于大模型参数众多,如 GPT-2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
API由一组具有不同功能和价位的模型提供支持。GPT-4是我们最新和最强大的模型。GPT-3.5-Turbo是为ChatGPT提供支持的模型,此模型专为对话模式进行了优化。要了解有关这些模型以及其他我们提供的内容的更多信息,请访问模型文档。[heading2]温度Temperature[content]简单来说,temperature的参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机的结果,也就是说这可能会带来更多样化或更具创造性的产出。我们目前也在增加其他可能token的权重。在实际应用方面,对于质量保障(QA)等任务,我们可以设置更低的temperature值,以促使模型基于事实返回更真实和简洁的结果。对于诗歌生成或其他创造性任务,你可以适当调高temperature参数值。翻译自OpenAI官方文档链接:https://platform.openai.com/docs/quickstart
[title]从0到1了解大模型安全,看这篇就够了encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。
[title]大模型入门指南[heading1]模型部署在LLM中,Token是输入的基本单元由于在大模型的参数非常多,比如在GPT-2中,有1.5B参数,每个参数用float32表示,那么需要的内存大小为4 bytes * 1,500,000,000 = 6GB,更先进的模型如LLAMA有65B参数,那么需要的内存就需要260G,这还是在不考虑词汇表的情况下。因此在进行模型实际部署时,会进行模型的压缩。而且,在训练LLM中,CPU与内存之间的传输速度往往是系统的瓶颈,核心数反而不是大问题,因此减小内存使用是首要优化点。使用内存占用更小的数据类型是一种直接的方式,比如16位的浮点数就可以直接将内存使用减倍。目前有几种相互竞争的16位标准,但英伟达在其最新一代硬件中引入了对bfloat16的支持,|Format|Significand|Exponent|<br>|-|-|-|<br>|bfloat16|8 bits|8 bits|<br>|float16|11 bits|5 bits|<br>|float32|24 bits|8 bits|