直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

目前最先进的算法模型是什么

回答

目前较为先进的算法模型包括:

  1. GPT-4:是 OpenAI 最新且最强大的模型。
  2. GPT-3.5-Turbo:为 ChatGPT 提供支持,专为对话模式优化。

大模型具有以下特点:

  1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。
  2. 参数众多:如 OpenAI 在 2020 年发布的 GPT-3 已达到 170B 的参数。

在模型架构方面:

  1. encoder-only 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。
  2. encoder-decoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。
  3. decoder-only 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。

在模型部署方面: 由于大模型参数众多,如 GPT-2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

快速开始

API由一组具有不同功能和价位的模型提供支持。GPT-4是我们最新和最强大的模型。GPT-3.5-Turbo是为ChatGPT提供支持的模型,此模型专为对话模式进行了优化。要了解有关这些模型以及其他我们提供的内容的更多信息,请访问模型文档。[heading2]温度Temperature[content]简单来说,temperature的参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机的结果,也就是说这可能会带来更多样化或更具创造性的产出。我们目前也在增加其他可能token的权重。在实际应用方面,对于质量保障(QA)等任务,我们可以设置更低的temperature值,以促使模型基于事实返回更真实和简洁的结果。对于诗歌生成或其他创造性任务,你可以适当调高temperature参数值。翻译自OpenAI官方文档链接:https://platform.openai.com/docs/quickstart

从 0 到 1 了解大模型安全,看这篇就够了

[title]从0到1了解大模型安全,看这篇就够了encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

大模型入门指南

[title]大模型入门指南[heading1]模型部署在LLM中,Token是输入的基本单元由于在大模型的参数非常多,比如在GPT-2中,有1.5B参数,每个参数用float32表示,那么需要的内存大小为4 bytes * 1,500,000,000 = 6GB,更先进的模型如LLAMA有65B参数,那么需要的内存就需要260G,这还是在不考虑词汇表的情况下。因此在进行模型实际部署时,会进行模型的压缩。而且,在训练LLM中,CPU与内存之间的传输速度往往是系统的瓶颈,核心数反而不是大问题,因此减小内存使用是首要优化点。使用内存占用更小的数据类型是一种直接的方式,比如16位的浮点数就可以直接将内存使用减倍。目前有几种相互竞争的16位标准,但英伟达在其最新一代硬件中引入了对bfloat16的支持,|Format|Significand|Exponent|<br>|-|-|-|<br>|bfloat16|8 bits|8 bits|<br>|float16|11 bits|5 bits|<br>|float32|24 bits|8 bits|

其他人在问
如果想学习ai,作为ai产品经理,需要ai底层的算法掌握到什么程度
作为 AI 产品经理,对 AI 底层算法的掌握程度需要达到以下几个方面: 1. 理解产品核心技术:了解基本的机器学习算法原理,以便做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能够准确判断某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品未来的发展趋势。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关算法知识,提升数据分析能力。 同时,如果希望在 AI 领域继续精进,还需要了解以下基础内容: AI 背景知识: 基础理论:清楚人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等的基本结构。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-05
介绍一下视觉算法产品,以及该方向产品经理需要做的内容,以及面试可能会考察的知识点
目前知识库中暂时没有关于视觉算法产品、该方向产品经理工作内容以及面试考察知识点的相关信息。但一般来说,视觉算法产品是利用计算机视觉技术来实现特定功能的产品,例如图像识别、目标检测、视频分析等。 视觉算法产品经理需要做的工作内容可能包括: 1. 市场调研与需求分析:了解市场需求、竞争对手情况,挖掘潜在的用户需求。 2. 产品规划与定义:明确产品的目标、功能、性能指标等。 3. 算法选型与整合:根据需求选择合适的视觉算法,并进行整合和优化。 4. 项目管理与推进:协调开发团队、测试团队等,确保项目按时交付。 5. 与客户沟通:收集反馈,优化产品。 在面试视觉算法产品经理时,可能会考察以下知识点: 1. 计算机视觉基础知识,如常见的算法和模型。 2. 对相关行业和市场的了解。 3. 产品管理的方法和流程。 4. 项目管理经验和能力。 5. 沟通协调和团队合作能力。
2024-11-01
好用简单的算法有哪些?
以下为您介绍一种在自制 2048 小游戏中应用的简单算法: 作者吵爷前阵子写了 BP 算法入门,因公式多遭批评,近期学习 Pygame 制作 55 的 2048 小游戏。偶然产生让 AI 玩的想法,简单与 GPT 交流后,带入一些简单算法使 AI 能运行游戏,虽性能不如人,但能直观感受算法对模型性能的提升,对初学者比看数学公式更友好。目前仅在基础逻辑做优化,后续会继续改进。未用到高级算法,但此案例可作为简单算法应用的参考。
2024-10-31
解释算法的ai?
算法在 AI 中具有重要地位。AI 技术的发展历程经历了多个阶段,包括早期的专家系统、博弈论和机器学习初步理论,知识驱动时期的专家系统、知识表示和自动推理,统计学习时期的机器学习算法如决策树、支持向量机和贝叶斯方法等,以及深度学习时期的深度神经网络、卷积神经网络和循环神经网络等。 当前 AI 的前沿技术点众多,例如大模型如 GPT、PaLM 等,多模态 AI 包括视觉语言模型和多模态融合,自监督学习如自监督预训练、对比学习和掩码语言模型等,小样本学习如元学习、一次学习和提示学习等,可解释 AI 涉及模型可解释性、因果推理和符号推理等,机器人学涵盖强化学习、运动规划和人机交互等,量子 AI 包含量子机器学习和量子神经网络等,还有 AI 芯片和硬件加速。 需要注意的是,在物理科学等领域,我们期望构建特定的测量设备来测量我们“知道如何解释”的数量,但人工智能有时更像是一个黑匣子,正在测量某些东西,但至少在一开始我们不一定对它有任何解释。有时我们能够进行与我们知道的一些描述相关联的训练,从而得到一个粗略的解释,就像情感分析这样的情况,但常常并非如此。甚至在物理科学中也可能出现类似情况,比如测试一种材料是否刮擦另一种材料的表面,大概可以解释为材料的某种硬度,但实际上这只是一种测量,如果能成功地将其与其他事物联系起来,那就变得很重要。
2024-10-26
解释matlab算法的ai?
Matlab 本身并不是一种 AI 算法,而是一种广泛使用的数学计算和编程环境。然而,在 Matlab 中可以实现和应用各种与 AI 相关的算法和技术。 在 Matlab 中,您可以使用其丰富的数学函数和工具来处理数据、构建模型,并实现诸如机器学习中的分类、回归算法,深度学习中的神经网络构建和训练等。 例如,通过 Matlab 的机器学习工具箱,可以进行决策树、支持向量机等算法的实现和应用;利用深度学习工具箱,可以构建卷积神经网络、循环神经网络等深度模型,并进行训练和优化。 总之,Matlab 为实现 AI 算法提供了强大的支持和便利的开发环境。
2024-10-26
如何用ai进行图像算法识别
以下是关于 AI 在图像算法识别方面的相关内容: 在图像识别方面,AI 技术自身带来的造假难题可由其自身的同僚互鉴打假来解决。目前已有不少网站通过对大量图片数据的抓取和分析,给出对画作属性的判断可能性,例如 ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中,可能存在一些问题,如结构严谨的真实摄影作品会被误识别为 AI 作图,这是因为鉴定 AI 自身的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 另外,CNN(卷积神经网络)的结构基于两类细胞的级联模型,主要用于模式识别任务,在计算上更有效、快速,已应用于自然语言处理和图像识别等领域。 在汽车行业,AI 也有广泛应用: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司在开发和测试。 2. 车辆安全系统:用于增强自动紧急制动、车道保持辅助和盲点检测等系统的性能。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求。 5. 生产自动化:用于汽车制造的生产线自动化,提高效率和质量控制。 6. 销售和市场分析:帮助汽车公司分析市场趋势、消费者行为和销售数据。 7. 电动化和能源管理:优化电动汽车的电池管理和充电策略。 8. 共享出行服务:优化路线规划、车辆调度和定价策略。 9. 语音助手和车载娱乐:如 Amazon Alexa Auto 和 Google Assistant 等。 10. 车辆远程监控和诊断:提供实时诊断和支持。
2024-10-15
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
你认为目前最好用的大模型有哪些?
目前最好用的大模型包括: 1. OpenAI 的 GPT4:是最先进和广泛使用的大型语言模型之一,在多种任务上表现卓越,如文本生成、理解、翻译及各种专业和创意写作任务,能通过大量数据学习理解和生成人类语言,处理复杂问题和理解上下文能力出色。 2. Anthropic 公司的 Claude 3。 3. 谷歌的 Gemini。 4. 百度的文心一言。 5. 阿里巴巴的通义大模型。 大型模型主要分为两类: 1. 大型语言模型:专注于处理和生成文本信息。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 大型多模态模型与大型语言模型的不同点: 1. 处理的信息类型不同:大型语言模型专注于文本,大型多模态模型能处理多种类型信息。 2. 应用场景不同:大型语言模型主要用于自然语言处理任务,大型多模态模型应用领域更广泛。 3. 数据需求不同:大型语言模型依赖大量文本数据训练,大型多模态模型需要多种类型数据训练。 此外,如果想了解国内的大模型效果,可以参考第三方基准评测报告: 。需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-19
能生成sql语句的ai模型或工具,能提供api调用的
以下是一些能生成 SQL 语句并提供 API 调用的 AI 模型或工具的相关信息: OpenAI 的 GPT 系列模型,如 gpt40613 和 gpt3.5turbo0613 ,可以通过函数调用及其他 API 更新,让开发人员向模型描述函数,并让模型智能地选择输出一个包含调用这些函数所需参数的 JSON 对象。但需要注意的是,为了让 ChatGPT 返回符合要求的 JSON 格式,prompt 的定制尤为重要和复杂。 在使用代码执行来进行更精确的计算或调用外部 API 时,不能依赖模型自行准确地执行算术或长计算。可以指示模型编写和运行代码,例如将代码放入三重反引号中。生成输出后,可以提取并运行代码。同时,模型在正确使用 API 的指导下,可以编写使用 API 的代码,但需要通过提供 API 文档或代码示例进行指导。 但需要注意的是,执行模型生成的代码存在安全风险,建议在安全的沙箱环境中运行代码,避免潜在危害。
2024-11-19
图说AI大模型?
以下是关于 AI 大模型的相关内容: 一、大模型的整体架构 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集,这里的数据层并非用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。 3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法实现)或多模态模型(如市面上的文生图、图生图等模型,训练所用数据与 llm 不同,为图文或声音等多模态的数据集)。 4. 平台层:例如大模型的评测体系或 langchain 平台等,是模型与应用间的组成部分。 5. 表现层:也就是应用层,是用户实际看到的地方。 二、再补充一些概念 AI Agent Agent 是从年前到现在比较火的概念,被很多人认为是大模型的未来主要发展方向。中间的“智能体”其实就是 llm 或大模型,四个箭头分别是为 llm 增加的工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它把 llm 之间以及 llm 和工具之间通过代码或 prompt 的形式进行串接。 三、必须理解的核心概念 1. 泛化能力:指模型在未曾见过的数据上表现良好的能力,用大白话讲就是“举一反三”的能力,人类泛化能力很强,无需见过世界上每一只猫就能认识猫的概念。 2. 多模态:指多数据类型交互,能提供更接近人类感知的场景,大模型对应的模态有文本、图像、音频、视频等。 3. 对齐能力:指与人类价值观与利益目标保持一致的能力。但目前阶段,有很多提示词注入的方法能绕过各种限制,这也开辟了大模型领域黑白对抗的新战场。
2024-11-19
文生图模型性能排行
以下是一些文生图模型的性能排行相关信息: Kolors 是最近开源的文生图模型中表现出色的一个。它具有更强的中文文本编码器、高质量的文本描述、人标的高质量图片、强大的中文渲染能力以及巧妙解决高分辨率图加噪问题的 noise schedule,实测效果不错。 PIKA1.0 是一个全新的模型,文生视频和文生图的质量都有大幅度提升。在文生图方面稳定得令人惊讶,3D 和 2D 的动画效果出色。 为全面比较 Kolors 与其他模型的生成能力,构建了包含人工评估、机器评估的全面评测内容。在 KolorsPrompts 评估集中,Kolors 在整体满意度方面处于最优水平,其中画面质量显著领先其他模型。具体的平均分数如下: AdobeFirefly:整体满意度平均分 3.03,画面质量平均分 3.46,图文相关性平均分 3.84。 Stable Diffusion 3:整体满意度平均分 3.26,画面质量平均分 3.5,图文相关性平均分 4.2。 DALLE 3:整体满意度平均分 3.32,画面质量平均分 3.54,图文相关性平均分 4.22。 Midjourneyv5:整体满意度平均分 3.32,画面质量平均分 3.68,图文相关性平均分 4.02。 Playgroundv2.5:整体满意度平均分 3.37,画面质量平均分 3.73,图文相关性平均分 4.04。 Midjourneyv6:整体满意度平均分 3.58,画面质量平均分 3.92,图文相关性平均分 4.18。 Kolors:整体满意度平均分 3.59,画面质量平均分 3.99,图文相关性平均分 4.17。所有模型结果取自 2024.04 的产品版本。
2024-11-18
目前最先进的AI自动生成视频的软件
目前较为先进的 AI 自动生成视频的软件有以下几种: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,收费,年初在互联网爆火。由一家总部位于旧金山的 AI 创业公司制作,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能通过文字、图片等方式生成 4 秒左右的视频,致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。官方网站:https://runwayml.com/ 。Gen1 的主要能力有视频生视频、视频风格化、故事版、遮罩等,仅支持视频生视频是 Gen1 和 Gen2 的最大差异。Gen1 使用流程可参考:Gen1 能力介绍:https://research.runwayml.com/gen1 ;Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 ;也可通过视频学习:https://youtu.be/I4OeYcYf0Sc 。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下一些相关软件: |网站名|网址|费用|优势/劣势|教程| |||||| |luma||30 次免费|| |Kling|kling.kuaishou.com||支持运动笔刷,1.5 模型可以直出 1080P30 帧视频|| |hailuoai|https://hailuoai.video/|新账号 3 天免费,过后每天 100 分|非常听话,语义理解能力非常强|| |Opusclip|https://www.opus.pro/||利用长视频剪成短视频|| |Raskai |https://zh.rask.ai/||短视频素材直接翻译至多语种|| |invideoAI |https://invideo.io/make/aivideogenerator/||输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频|| |descript |https://www.descript.com/?ref=feizhuke.com|||| |veed.io|https://www.veed.io/|一次免费体验|自动翻译自动字幕|| |clipchamp |https://app.clipchamp.com/|免费,高级功能付费|| |typeframes |https://www.revid.ai/?ref=aibot.cn|有免费额度|| 更多的文生视频的网站可以查看这里: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-08
现在中国可以使用的相对较先进的AI音乐制作网站,推荐3个
以下为您推荐 3 个中国可以使用的相对较先进的 AI 音乐制作网站: 1. UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,人声和器乐质量极高,功能全面。支持上传音轨、REMIX、INPAINT 等高级功能,允许细致地控制音乐生成过程,但有一定技术门槛。 2. SUNO.ai:用户数量众多、广受欢迎的 AI 音乐生成平台。操作方便,支持多语言,能够一次生成完整曲长的音乐,但音质相对较差。 3. Microphonestudio.app:无需昂贵的录音设备即可进行多轨录音。
2024-10-28
现在最先进的提示词技术是什么?
目前较为先进的提示词技术包括以下几种: 1. 思维链(Chain of Thought, CoT):能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。 2. 思维树(Tree of Thoughts, ToT):可以应对复杂的商业问题,充分利用 AI 的潜力。 3. 思维图(Graph of Thoughts, GoT):帮助 AI 处理复杂推理。 4. 自生成上下文学习提示(SelfGenerated In1context Learning Prompt):核心在于自动生成示例,辅助模型更准确地理解和处理信息,输出更丰富和精准的内容。 5. 分解提示(Decomposed Prompting):把复杂任务或问题分解成更小、更易于管理和理解的部分,分别处理以提高模型执行指令的准确性。 6. 助产式提示词(Maieutic Prompting):灵感来源于苏格拉底的助产术教育模式,强调通过提问而非直接给出指令的方式来引导思考和学习。 7. 元提示(Meta Prompting):通过元模型向各个领域的专家模型发起咨询,获取深入的见解和知识。 8. 演绎验证(Deductive Verification):避免在使用 CoT 推理过程中出现逻辑漏洞和缺少逻辑推理链条的问题,确保推理过程合理且连贯,提高推理结果的可靠性。 9. CCoT:通过正反力矩的机制,指导模型识别正确与错误,方法简洁直观。 10. PoT:是思维链技术的衍生,特别适用于数值推理任务,引导模型生成一系列代码,通过代码解释器工具进行最后运算,提升模型在数学问题求解上的表现。
2024-09-30
chatgpt4.0.1有什么新功能,比chatgpt4先进在哪些方面
ChatGPT 4.0.1 相较于 ChatGPT 4 具有以下新功能和先进之处: 1. 大大减少了幻觉,在内部对抗性设计的事实性评估中得分更高,比最新的 GPT3.5 高 19 个百分点。 2. 在遵循用户意图的能力方面有很大改进,在 70.2%的提示中,产生的响应比 GPT3.5 更受欢迎。 3. 在各种语言中的表现更优,包括低资源语言。 4. 知识更新方面,ChatGPT 4.0.1 知识更新到 2023 年 12 月,而 ChatGPT 4o 的知识更新到 2023 年 10 月。 需要注意的是,尽管 ChatGPT 4.0.1 有这些优势,但它仍存在与早期 GPT 模型类似的局限性,如对事实产生“幻觉”和出现推理错误等,在使用其输出时应谨慎。
2024-09-14
最先进的AI技术是什么?
目前最先进的 AI 技术包括以下几个方面: 1. 大模型:如 GPT、PaLM 等。 2. 多模态 AI:包括视觉语言模型(如 CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:例如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:像元学习、一次学习、提示学习等。 5. 可解释 AI:涵盖模型可解释性、因果推理、符号推理等。 6. 机器人学:包含强化学习、运动规划、人机交互等。 7. 量子 AI:如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。
2024-08-31
怎么通过现有最先进的AI技术来做一个引文比对的工具
目前最先进的 AI 技术在做引文比对工具方面,通常会运用自然语言处理(NLP)技术和机器学习算法。例如,可以利用深度学习模型如 Transformer 架构的语言模型来理解和分析引文的文本内容。通过对大量引文数据的训练,模型能够学习到不同引文之间的相似性和差异性特征。 还可以运用词向量技术,将引文转换为数值向量,以便进行相似度计算和比较。同时,结合聚类算法和分类算法,可以对引文进行分类和分组,从而更有效地进行比对。 但要实现这样一个工具,需要具备深厚的技术知识和数据处理能力,包括数据收集、清洗、标注,以及模型的训练、优化和评估等一系列工作。
2024-08-09
目前最方便的用来编程的免费AI有哪些?不能只会生成代码,还要像cursor一样有多种便利的编程功能
目前较为方便且具有多种便利编程功能的免费 AI 编程工具包括: 1. Cursor:是一个现代化的集成开发环境(IDE),具有 AI 辅助编码、代码自动补全、实时代码分析、多语言支持、集成终端、Git 集成、自定义主题、跨平台、性能优化和实时协作等特点。可通过 https://www.cursor.com/ 链接进入主页下载。 2. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 3. 通义灵码:阿里巴巴团队推出,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 4. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 5. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 6. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,了解开发者的整个代码库。个人使用免费。 7. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 8. Codeium:一个由 AI 驱动的编程助手工具,提供代码建议、重构提示和代码解释,提高编程效率和准确性。 此外,还有一些其他工具,如 Wing Python IDE Pro,专为 Python 编程设计,集成多种功能,但年度许可证起价 179 美元/月;Smol Developer 是开源的 AI 开发助手,能根据产品需求生成完整的代码库,遵循 MIT 许可证。 每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。更多辅助编程 AI 产品,还可以查看 https://www.waytoagi.com/category/65 。
2024-11-21
目前比较好用的AI辅助制作ppt的工具,推荐
以下是一些比较好用的 AI 辅助制作 PPT 的工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果,以增强演示文稿的吸引力。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后拥有强大的团队,能敏锐把握 AI 与 PPT 结合的市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-20
目前主流ai软件的功能及区别
目前主流的 AI 软件具有多种功能,以下为您介绍部分软件的功能及区别: 在软件架构设计方面: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 Gliffy:基于云的绘图工具,提供创建各种架构图功能,包括逻辑视图和部署视图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在其他应用方面: AI 摄影参数调整助手:利用图像识别、数据分析技术,如一些摄影 APP 的参数调整功能,根据场景自动调整摄影参数。 AI 音乐情感分析平台:通过机器学习、音频处理技术,如音乐情感分析软件,分析音乐的情感表达。 AI 家居智能照明系统:结合物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制。 AI 金融风险预警平台:运用数据分析、机器学习,如金融风险预警软件,提前预警金融风险。 AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝的路线优化功能,根据用户需求优化旅游路线。 在辅助写邮件方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和多种语言,网站:https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站:http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成,网站:https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站:https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。
2024-11-20
目前最好的公文写作软件是哪个
目前在公文写作方面,以下是一些相关的软件和工具: 1. Kimi 推出的“公文笔杆子”,是公文材料写作的必备工具,能有效提高写作效率。 2. 秘塔写作猫(https://xiezuocat.com/):是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,支持全文改写、一键修改、实时纠错并给出修改建议,还能智能分析文章属性并打分。 3. 笔灵 AI 写作(https://ibiling.cn/):是智能写作助手,在心得体会、公文写作等方面表现出色,支持一键改写/续写/扩写,能锤炼打磨文字。 4. 腾讯 Effidit 写作(https://effidit.qq.com/):由腾讯 AI Lab 开发的智能创作助手,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。但需注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-19
AI目前最新发展是什么
AI 目前的最新发展包括以下几个方面: 1. 技术发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 2. 当前前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 3. 产品设计和商业化思路的变化: 从通用能力到专业化细分:如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具)等,每个细分领域的产品都在不断提升核心能力,为用户提供更精准和高质量的服务。 商业模式的探索与创新:ToB 市场的深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从单纯的技术展示向解决用户痛点和创造商业价值转变。 此外,AI 是一个快速发展的领域,新的研究成果和技术不断涌现。新手可以通过持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流来保持对最新发展的了解。
2024-11-18