Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在最先进的提示词技术是什么?

Answer

目前较为先进的提示词技术包括以下几种:

  1. 思维链(Chain of Thought, CoT):能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。
  2. 思维树(Tree of Thoughts, ToT):可以应对复杂的商业问题,充分利用 AI 的潜力。
  3. 思维图(Graph of Thoughts, GoT):帮助 AI 处理复杂推理。
  4. 自生成上下文学习提示(Self-Generated In1-context Learning Prompt):核心在于自动生成示例,辅助模型更准确地理解和处理信息,输出更丰富和精准的内容。
  5. 分解提示(Decomposed Prompting):把复杂任务或问题分解成更小、更易于管理和理解的部分,分别处理以提高模型执行指令的准确性。
  6. 助产式提示词(Maieutic Prompting):灵感来源于苏格拉底的助产术教育模式,强调通过提问而非直接给出指令的方式来引导思考和学习。
  7. 元提示(Meta Prompting):通过元模型向各个领域的专家模型发起咨询,获取深入的见解和知识。
  8. 演绎验证(Deductive Verification):避免在使用 CoT 推理过程中出现逻辑漏洞和缺少逻辑推理链条的问题,确保推理过程合理且连贯,提高推理结果的可靠性。
  9. CCoT:通过正反力矩的机制,指导模型识别正确与错误,方法简洁直观。
  10. PoT:是思维链技术的衍生,特别适用于数值推理任务,引导模型生成一系列代码,通过代码解释器工具进行最后运算,提升模型在数学问题求解上的表现。
Content generated by AI large model, please carefully verify (powered by aily)

References

【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力

然而,随着企业面临的挑战日益复杂,简单的提示词往往无法满足需求。例如,当我们要求AI “分析我们的市场状况”时,可能得到的只是一些浅显的观察。这种简单提示无法充分利用AI的潜力,也无法应对复杂的商业问题。正是这种局限性推动了更先进提示技巧的发展,如思维链(Chain of Thought,CoT)、思维树(Tree of Thoughts,ToT)和思维图(Graph of Thoughts,GoT)等。这些高级技巧能够引导AI进行更深入的分析、探索多种可能性,并处理复杂的推理任务。在接下来的内容中,我们将深入探讨这些先进的提示词工程技巧,了解它们如何应用于企业决策、创新和战略规划等关键领域。通过掌握这些技巧,企业领导者将能够更有效地利用AI技术,在竞争激烈的商业环境中保持领先地位。我们和AI交互的时候,缺乏背景的了解,为了更好把前因后果告诉它,让它好好干活,就有了提示词的关键要素,有了很多框架。比如去年新加坡提示词工程比赛冠军用到的一个框架。

提示词培训课——Part4

现在,让我们进入到进阶技术部分,深入探讨自生成上下文学习提示这一进阶技术。这项技术的核心在于自动生成示例,以此来实现对上下文的深入学习。通过这种自动化的生成,可以辅助模型更准确地理解和处理信息,从而输出更加丰富和精准的内容。[heading1]六、进阶技术——Decomposed Prompting[content]“分解提示”技术,会把一个复杂的任务或问题分解成更小、更易于管理和理解的部分,然后分别对这些部分进行处理,从而提高模型执行指令的准确性。[heading1]七、进阶技术——Maieutic Prompting[content]接下来,我们将探讨一种称为助产式提示词的进阶技术。这种技术灵感来源于苏格拉底的助产术教育模式,它强调通过提问而非直接给出指令的方式来引导思考和学习。[heading1]八、进阶技术——Meta Prompting[content]接下来,让我们探讨元提示技术,这是一种先进的提示词工程方法。元提示技术通过一个元模型(Meta Model),不断地向各个领域的专家模型发起咨询,以获取深入的见解和知识。[heading1]九、进阶技术——Deductive Verification[content]在进阶技术的最后一部分,我们将讨论演绎验证技术。这种技术能够帮助我们避免在使用CoT推理过程中出现的逻辑漏洞,以及缺少逻辑推理链条的问题。通过演绎验证,我们可以确保推理过程的每一步都是合理且连贯的,从而提高推理结果的可靠性。

提示词培训课——Part3

各位,时间飞逝,转眼间我们已经迎来了学习的第三阶段。在这一阶段,我们将深入探讨一些最新的技术发展,包括但不限于提示词工程和智能体的进一步教学。这些内容无疑将为我们的认知带来新的深度。现在,让我们直接进入主题,开始我们的探索之旅吧![heading1]二、Part3课程导览[heading1]三、上节回顾[heading1]四、进阶技术——CCoT[content]首先,让我们来了解第一个提示词进阶技术——CCoT。CCoT通过正反力矩的机制,指导模型识别正确与错误。这种方法简洁而直观,非常容易理解。[heading1]五、进阶技术——PoT[content]在日常使用中,我们会发现一个非常有意思的问题:大模型在解决数学问题时可能不够可靠(甚至连简单的加法都会算错)。那么如果有数学运算的任务,大模型岂不就是不行了?不要着急,接下来我们就来讨论下数值增强类的提示词技术。PoT技术,实际上是思维链技术的一个衍生。PoT特别适用于数值推理任务,它会引导模型生成一系列代码,模型再通过代码解释器工具进行最后运算。通过这种引导模型生成代码再进行执行的手段,可以显著提升模型在数学问题求解上的表现。PoT作为CoT的衍生技术,也遵循了零样本和少样本的学习范式。零样本PoT与CoT在方法上极为相似,它们都不需要大量的样本即可进行有效的推理。同样,少样本PoT也采用了类似的策略,通过较少的样本来优化模型的表现。

Others are asking
我现在已经有ppt提示词了 需要生成ppt 那个ai软件可以根据提示词shengchengvppt
以下是一些可以根据提示词生成 PPT 的 AI 软件及相关信息: 闪击: 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 操作流程:选择模版,输入大纲和要点(需将准备的大纲转换成适配闪击的语法),点击文本转 PPT 并在提示框中选择确定,可在线编辑,但导出 PPT 有会员限制。 参考指南:https://zhuanlan.zhihu.com/p/607583650 Claude:可用于生成语文老师 PPT 配图,整个流程为输入 Prompt,用户输入主题、风格,AI 输出最终结果。获取提示词可参考相关开源内容。 此外,还有一些其他与 AI 生成相关的内容,如用 AI 三步制作任意公司的周边图片,流程包括获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成等。
2025-03-18
如何写提示词
写提示词(prompt)是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些编写提示词的要点和方法: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格,在提示词中明确指出。 5. 使用示例:提供期望结果的示例,帮助 AI 模型理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 不同的工具和场景中,写提示词还有一些特定的注意事项: 星流一站式 AI 设计工具: 输入语言:通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化:启用后可扩展提示词,更生动描述画面。 写好提示词:内容准确,包含人物主体、风格、场景特点等;调整负面提示词,帮助 AI 理解不想生成的内容;利用“加权重”功能,让 AI 明白重点内容;还可使用辅助功能,如翻译、删除所有提示词、会员加速等。 预设词组:小白用户可点击提示词上方官方预设词组生图。 【SD】文生图: 描述逻辑:通常包括人物及主体特征(服饰、发型发色等)、场景特征、环境光照、画幅视角、画质、画风等。 辅助方法:可利用功能型辅助网站,如 http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ ;也可去 C 站(https://civitai.com/)抄作业,但要注意图像作者使用的大模型和 LORA。
2025-03-18
Deepseek-R1的系统提示词
以下是关于 DeepSeekR1 的系统提示词的相关内容: 核心原理认知: AI 特性定位:支持文本/代码/数学公式混合输入。 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右)。 任务适应性:可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架: 四要素模板。 格式控制语法:强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号>表示关键要求,!表示禁止项。 进阶控制技巧: 思维链引导:分步标记法,苏格拉底式追问。 知识库调用:领域限定指令,文献引用模式。 多模态输出。 此外,还有关于 DeepSeekR1 的其他相关报道,如宝玉日报 1 月 26 日中对其的介绍,以及利用 DeepSeekR1 一分钟生成小红书爆款单词视频的相关内容,包括生成单词的步骤、角色、技能和限制等。
2025-03-18
会议纪要提示词
以下是为您提供的有关会议纪要提示词的相关内容: Claude 官方提示词: 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。任务是审查提供的会议记录,并创建一个简明扼要的总结,捕捉重要信息,重点关注会议期间分配给特定个人或部门的关键要点和行动项目。使用清晰专业的语言,并使用适当的格式(如标题、小标题和项目符号)以逻辑的方式组织总结。 Kimi 的 15 款官方提示词: 【📋会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼 智能纪要示例: 模型部署与资源抢占:资源抢占策略包括通过更改配置、加价和更换资源类型等方式抢占资源,如以 3 元抢到资源,阿里云采用拍卖机制,更高价者获得闲置资源。 模型测试情况:对模型进行数值比较和排列组合题的测试,结果有对有错,加系统提示词有一定概率做对。 模型部署操作:从 32B 中蒸馏模型,部署过程中需竞价获取资源,如尝试获取 L20 卡,未成功则加价或更换为 H100 卡等。 代码相关操作:在 Notebook 中进行代码操作,需修改 key、base 等内容,根据硬件获取情况调整代码运行。 基于派平台的模型训练与微调:显存越大的模型一般越贵,如 H100。模型加载时间长与模型大小和读硬盘速度有关,如 34B 模型需占 68G 以上显存。数据蒸馏过程通过向模型提问题获取答案来蒸馏数据,作为训练数据的 question 和 answer,蒸馏数据通常需人工校对,微调模型所需数据量因领域宽窄而异。模型训练方式在派平台上进行训练,可选全仓微调等训练方法,需设置各项参数,如学习率、文本序列长度等,训练时长约 26 小时,价格约 800 元,训练好的模型可下载和部署。系统提示词在训练中让模型知道接受新训练,在推理时激发特定训练数据,取决于训练目的。
2025-03-18
有没有写科研可行性分析报告的提示词之类工具
以下是一些关于写科研可行性分析报告的提示词相关内容: 可以先确定整个调研报告的大纲目录,比如通过老师发的示例报告截图用手机识别。 确定整体的语言风格和特色,调研报告一般和论文差不多,语言风格通常是“逻辑清晰,层层递进,条理分明”,还可以把范文丢给 Claude 2 总结语言风格。 让 GPT4 按照目录逐步生成章节内容,在 workflow 中设置循环结构,生成一段章节内容后经同意再进行下一章节,否则重新生成。 在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再来撰写报告章节部分。 为了让 GPT4 有更好的选择性搜索,可以选择使用 webpolit 插件。 不要过于限制 GPT4,否则可能导致生成效果不佳。
2025-03-18
deepsek 提示词
以下是关于 DeepSeek 提示词的相关内容: 1. 生成单词: 开始:输入单词主题、图片风格、单词数量,如非洲动物、真实风格、2。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,为用户输出指定数量的单词,并以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。 2. DeepSeek 时代提示词之关键诉求: 观察发现:完整的提示词可能不如片段有效,甚至可能干扰模型的思考流程,过长提示会带来 Token 浪费和上下文污染,在多轮对话中尤其明显。在 deepseek 时代,用户只需在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。新旧提示法对比,传统方法像唠叨家长,新型技巧像对聪明助理打暗号。 3. 集合·DeepSeek 提示词方法论: 核心原理认知:包括 AI 特性定位(多模态理解、动态上下文、任务适应性)和系统响应机制(采用意图识别+内容生成双通道,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重、符号强调敏感)。 基础指令框架:如果不知道如何表达,可套用框架指令,包括四要素模板、格式控制语法(强制结构、占位符标记、优先级符号)。 进阶控制技巧:包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。
2025-03-18
全世界最先进的模型是什么
目前全世界较为先进的模型包括: Meta 发布的 Meta Movie Gen 文生视频模型,Meta 称其为“迄今为止最先进的媒体基础模型(Media Foundation Models)”,但模型未公开上线。相关链接:https://ai.meta.com/research/moviegen/ 媒体报道:量子位:Meta 版 Sora 无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92 页论文无保留公开 https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg 歸藏的 AI 工具:Meta 发布视频生成和编辑模型,来看看项目负责人的论文导读 https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g OpenAI 的 GPT4 是其最新和最强大的模型,GPT3.5Turbo 是为 ChatGPT 提供支持的模型,此模型专为对话模式进行了优化。相关链接:https://platform.openai.com/docs/quickstart Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡。这标志首次开放模型缩小与专有前沿的差距。 此外,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了 SOTA。中国模型更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像 Common Crawl 这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。
2024-12-30
比H200更先进的GPU是什么
目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。 Blackwell B200 GPU 具有以下优势: 1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。 2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。 3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT4 这样的模型。 它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。
2024-12-23
目前最先进的AI自动生成视频的软件
目前较为先进的 AI 自动生成视频的软件有以下几种: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,收费,年初在互联网爆火。由一家总部位于旧金山的 AI 创业公司制作,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能通过文字、图片等方式生成 4 秒左右的视频,致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。官方网站:https://runwayml.com/ 。Gen1 的主要能力有视频生视频、视频风格化、故事版、遮罩等,仅支持视频生视频是 Gen1 和 Gen2 的最大差异。Gen1 使用流程可参考:Gen1 能力介绍:https://research.runwayml.com/gen1 ;Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 ;也可通过视频学习:https://youtu.be/I4OeYcYf0Sc 。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下一些相关软件: |网站名|网址|费用|优势/劣势|教程| |||||| |luma||30 次免费|| |Kling|kling.kuaishou.com||支持运动笔刷,1.5 模型可以直出 1080P30 帧视频|| |hailuoai|https://hailuoai.video/|新账号 3 天免费,过后每天 100 分|非常听话,语义理解能力非常强|| |Opusclip|https://www.opus.pro/||利用长视频剪成短视频|| |Raskai |https://zh.rask.ai/||短视频素材直接翻译至多语种|| |invideoAI |https://invideo.io/make/aivideogenerator/||输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频|| |descript |https://www.descript.com/?ref=feizhuke.com|||| |veed.io|https://www.veed.io/|一次免费体验|自动翻译自动字幕|| |clipchamp |https://app.clipchamp.com/|免费,高级功能付费|| |typeframes |https://www.revid.ai/?ref=aibot.cn|有免费额度|| 更多的文生视频的网站可以查看这里: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-08
目前最先进的算法模型是什么
目前较为先进的算法模型包括: 1. GPT4:是 OpenAI 最新且最强大的模型。 2. GPT3.5Turbo:为 ChatGPT 提供支持,专为对话模式优化。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。 在模型架构方面: 1. encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. encoderdecoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 3. decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。 在模型部署方面: 由于大模型参数众多,如 GPT2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2024-10-29
现在中国可以使用的相对较先进的AI音乐制作网站,推荐3个
以下为您推荐 3 个中国可以使用的相对较先进的 AI 音乐制作网站: 1. UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,人声和器乐质量极高,功能全面。支持上传音轨、REMIX、INPAINT 等高级功能,允许细致地控制音乐生成过程,但有一定技术门槛。 2. SUNO.ai:用户数量众多、广受欢迎的 AI 音乐生成平台。操作方便,支持多语言,能够一次生成完整曲长的音乐,但音质相对较差。 3. Microphonestudio.app:无需昂贵的录音设备即可进行多轨录音。
2024-10-28
chatgpt4.0.1有什么新功能,比chatgpt4先进在哪些方面
ChatGPT 4.0.1 相较于 ChatGPT 4 具有以下新功能和先进之处: 1. 大大减少了幻觉,在内部对抗性设计的事实性评估中得分更高,比最新的 GPT3.5 高 19 个百分点。 2. 在遵循用户意图的能力方面有很大改进,在 70.2%的提示中,产生的响应比 GPT3.5 更受欢迎。 3. 在各种语言中的表现更优,包括低资源语言。 4. 知识更新方面,ChatGPT 4.0.1 知识更新到 2023 年 12 月,而 ChatGPT 4o 的知识更新到 2023 年 10 月。 需要注意的是,尽管 ChatGPT 4.0.1 有这些优势,但它仍存在与早期 GPT 模型类似的局限性,如对事实产生“幻觉”和出现推理错误等,在使用其输出时应谨慎。
2024-09-14
大语言模型的技术原理
大语言模型的技术原理包括以下几个方面: 1. 相关概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 3. 工作原理: 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 Transformer 模型通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。 4. 可能存在的问题:大模型可能因错误数据导致给出错误答案,即大模型幻觉,优质数据集对其很重要。 5. 相关应用: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。
2025-03-18
最新的AI技术动态
以下是关于最新的 AI 技术动态的相关内容: AI 技术的学习路径: 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 2024 年 AI 大事纪: 3 月:AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 4 月:英伟达发布硬件股价飙升。 5 月:苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 7 月:快手开源 LivePortrait 模型,表情迁移。 8 月:StabilityAI 老板成立新公司发布 flux 大模型。 9 月:阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 10 月:Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 AI 技术的发展历程和前沿技术点: 发展历程: 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型(Large Language Models):GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-16
deepseek与chatgpt有本质上的不同吗?是否引入了全新的ai技术和模型?
DeepSeek R1 与 ChatGPT 有本质上的不同。DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理(Reasoning)模型,在回答用户问题前会先进行“自问自答”式的推理思考,以提升最终回答的质量,这种“自问自答”是模拟人类的深度思考。 而多数其他 AI 模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 此外,DeepSeek R1 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。它在美国 App Store 夺冠,超越 OpenAI 的 ChatGPT,成为开源 AI 领域的领军者。其 R1 模型以仅 27 分之一的成本实现卓越表现,创新的 R1 Zero 模型显示出模型思考能力的自我涌现,或将引领 AGI 的新方向。
2025-03-13
我是问国内有哪些工具可以用AI技术自动生成原型图
以下是国内一些可以用 AI 技术自动生成原型图的工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,目前还有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 2. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 3. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-13
具身智能最核心的技术热点是什么
具身智能最核心的技术热点包括以下方面: 1. 人机混合增强智能标准:规范多通道、多模式和多维度的交互途径、模式、方法和技术要求,如脑机接口、在线知识演化、动态自适应、动态识别、人机协同感知、人机协同决策与控制等。 2. 智能体标准:规范以通用大模型为核心的智能体实例及智能体基本功能、应用架构等技术要求,包括智能体强化学习、多任务分解、推理、提示词工程,智能体数据接口和参数范围,人机协作、智能体自主操作、多智能体分布式一致性等。 3. 群体智能标准:规范群体智能算法的控制、编队、感知、规划、决策、通信等技术要求和评测方法,包括自主控制、协同控制、任务规划、路径规划、协同决策、组网通信等。 4. 跨媒体智能标准:规范文本、图像、视频、音频等多模态数据处理基础、转换分析、融合应用等方面的技术要求,包括数据获取与处理、模态转换、模态对齐、融合与协同、应用扩展等。 5. 具身智能标准:规范多模态主动与交互、自主行为学习、仿真模拟、知识推理、具身导航、群体具身智能等。 具身智能需要具备感知、决策和执行三种核心能力。执行能力是技术难点,涉及硬件设计,具身智能体主要分为移动和操作两大能力。移动方面,各种类型机器人在不同地形下实现鲁棒的移动仍是前沿学术问题。操作方面,现阶段能落地的只有简单抓取,可泛化的通用执行能力是三大核心能力中最短的板。大语言模型(LLM)为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2025-03-12
AI产品经理应该具备哪些技能,需要学习哪些工具?计算机科学与技术专业的研究生如果想找AI产品经理的实习应该如何着手准备呢?如何准备项目呢?
AI 产品经理应具备的技能和需要学习的工具包括: 1. 学历背景:本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 工具熟悉:熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验;熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理;具有一定的编程基础,熟练使用 Python、Git 等工具。 3. 项目能力:负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法;了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 4. 思维能力:对数据驱动的决策有深入的理解,能够基于数据分析做出决策;具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案;对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践;对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注;具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 计算机科学与技术专业的研究生如果想找 AI 产品经理的实习,可以从以下方面着手准备: 1. 了解行业需求:搜索了解目前 AI 产品经理岗位的招聘技能要求情况。 2. 学习相关知识:深入学习上述提到的技能和工具知识。 3. 积累项目经验:可以参与一些相关的实践项目,例如收集数据、训练模型、派送模型等。 4. 思考商业价值:思考可以自动化的任务、驱动商业价值的核心以及商业领域的主要痛点。 5. 准备项目时,要明确项目目标,制定合理的开发时间表,清晰所需时间和人员。同时,为项目提供验收标准,尽量以数据衡量。 以上内容仅供参考,不同公司和项目可能有不同的具体要求。
2025-03-12
现在哪个应用文生图的效果最好?
目前在应用文生图方面,以下几个模型效果较好: 1. DALL·E 3:与当前最流行的文生图应用 Midjourney 相比能打个平手甚至超越,使用门槛较低,不需要用户掌握复杂的 Prompt 编写知识,且已正式上线 ChatGPT,Plus 用户和 Enterprise 用户都可以使用。 2. Imagen 3:真实感满分,指令遵从强。 3. Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 但不同模型也有各自的特点和不足,例如: 1. Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 2. 快手可图:影视场景能用,风格化较差。 3. Flux.1.1:真实感强,需要搭配 Lora 使用。 4. 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 5. Luma:影视感强,但风格单一,糊。 6. 美图奇想 5.0:AI 油腻感重。 7. 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 8. SD 3.5 Large:崩。 您可以根据具体需求和使用体验选择适合的模型。
2025-03-17
作为一个产品经理,我现在要设计一个企业内的销售培训智能体,我手里有产品知识、销售基础知识,我该怎么设计,是只做rag还是做多智能体协同?
以下是为您设计企业内销售培训智能体的一些建议: 首先,了解多智能体模式的设置。它包括全局设置和多个代理之间的编排协调两个核心部分。全局设置涵盖角色设定与回复逻辑、记忆管理以及对话体验等,其中人物设定与回复逻辑应侧重于角色塑造。在智能体的交互流程设计上,要形成完整的互动链条,当用户意图未满足跳转条件时,保持与当前智能体的沟通。设计多轮协作的智能体时,应将其交互设计为闭环结构,以确保用户能自由切换。 其次,动手实践制作智能体。对于 Chat GPT 版本,可按以下步骤:点击“浏览 GPTs”按钮,点击“Create”按钮创建,使用自然语言对话或手工设置进行具体配置,然后调试并发布。对于 Chat GLM 版本,点击“创建智能体”按钮,输入智能体描述,可粘贴准备好的提示词模板,其配置可自动生成,可根据需求调整并上传本地文件作为知识库。 然后,考虑多智能体协同的概念。在处理复杂任务时,单智能体可能面临提示词修改和逻辑不清晰的问题。多智能体协作如吴恩达所举例,每个智能体被赋予不同身份,互相合作对话,能模拟现实工作场景,成为复杂系统,但可能存在效率不高的情况。 最后,您可以根据实际情况选择是采用 RAG 还是多智能体协同。如果任务相对简单,RAG 可能足够;若任务复杂,涉及多个环节和角色的协作,多智能体协同可能更合适。您还可以通过具体的例子,如旅游场景中负责景点推荐、路线规划和食宿安排的三个智能体,来更好地理解和设计。
2025-03-16
现在有哪些类型的AI智能工具,每个类型分别有哪些主流产品,他们分别有什么优势
以下是一些常见类型的 AI 智能工具、主流产品及其优势: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议,助开发者更快、更少地编写代码。 通义灵码:阿里巴巴推出,提供行级/函数级实时续写、自然语言生成代码等多种能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费工具,基于 130 亿参数的预训练大模型,可快速生成代码提升效率。 Cody:Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队推出的免费代码助手,基于自研基础大模型微调。 Codeium:通过提供代码建议等帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。 2. 图生图工具: Artguru AI Art Generator:在线平台,生成逼真图像,为设计师提供灵感。 Retrato:将图片转换为非凡肖像,有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:通过稳定扩散算法生成精细、具细节的全新视觉作品。 Barbie Selfie Generator:将上传照片转换为芭比风格,效果好。 这些工具通过组合技术生成创意且质量不错的相似图像,但存在性能不稳定、生成内容不当等局限。 3. PPT 制作工具: Gamma:在线网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。https://gamma.app/ 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。https://www.xdesign.com/ppt/ Mindshow:提供自动布局、图像选择和文本优化等智能设计功能。https://www.mindshow.fun/ 讯飞智文:科大讯飞推出,利用语音识别和自然语言处理技术优势,提供智能文本生成等功能。https://zhiwen.xfyun.cn/
2025-03-16
NLP包括哪些任务,现在的GPT是否都已覆盖,CV类包括哪些任务,现在由哪些网络模型覆盖
NLP 包括的任务有文本分类、情感分析、命名实体识别、信息抽取、机器翻译、问答系统、摘要生成等。目前 GPT4 在一系列 NLP 任务上表现出色,优于现有的大型语言模型,但不能说已完全覆盖所有 NLP 任务。 CV 包括的任务有图像分类、目标检测、图像分割、图像生成、视频分析等。在 CV 领域,一些常见的网络模型有生成对抗网络(GANs)、变分自编码器(VAEs)、流模型、扩散模型、视觉变压器(ViT)、Swin 变压器等。
2025-03-16
现在有能自主抓取股票交易数据的AI吗
目前在信息爆炸的时代,借助 AI 工具可以实现集检索、整合与分析为一体的工作。以 A 股行情问答为例,可构建一个 Bot,当被问及如“XX 股票今天表现怎么样?”“复盘今天的家电板块”等问题时,它能从海量市场数据中找到有价值信息,进行整合分析并提供个性化回复。但需要注意的是,若希望在本地私有化部署,就无法使用某些相关服务。 不过,尚未有明确表明存在能完全自主抓取股票交易数据的 AI 。
2025-03-15