Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

全世界最先进的模型是什么

Answer

目前全世界较为先进的模型包括:

  • Meta 发布的 Meta Movie Gen 文生视频模型,Meta 称其为“迄今为止最先进的媒体基础模型(Media Foundation Models)”,但模型未公开上线。相关链接:https://ai.meta.com/research/movie-gen/ 媒体报道:量子位:Meta 版 Sora 无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92 页论文无保留公开 https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg 歸藏的 AI 工具:Meta 发布视频生成和编辑模型,来看看项目负责人的论文导读 https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g
  • OpenAI 的 GPT-4 是其最新和最强大的模型,GPT-3.5-Turbo 是为 ChatGPT 提供支持的模型,此模型专为对话模式进行了优化。相关链接:https://platform.openai.com/docs/quickstart
  • Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT-4 相抗衡。这标志首次开放模型缩小与专有前沿的差距。

此外,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了 SOTA。中国模型更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像 Common Crawl 这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。

Content generated by AI large model, please carefully verify (powered by aily)

References

新王登基-Meta发布Meta Movie Gen文生视频模型

Meta发布Meta Movie Gen文生视频模型,Meta表示,这是“迄今为止最先进的媒体基础模型(Media Foundation Models)”注意:模型未公开上线https://ai.meta.com/research/movie-gen/[7586_1728057079_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/MGcKbwcbxo7Gz6x4mbxcDv1tnzg?allow_redirect=1)媒体报道:量子位:Meta版Sora无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92页论文无保留公开https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg歸藏的AI工具:Meta发布视频生成和编辑模型,来看看项目负责人的论文导读https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g

快速开始

API由一组具有不同功能和价位的模型提供支持。GPT-4是我们最新和最强大的模型。GPT-3.5-Turbo是为ChatGPT提供支持的模型,此模型专为对话模式进行了优化。要了解有关这些模型以及其他我们提供的内容的更多信息,请访问模型文档。[heading2]温度Temperature[content]简单来说,temperature的参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机的结果,也就是说这可能会带来更多样化或更具创造性的产出。我们目前也在增加其他可能token的权重。在实际应用方面,对于质量保障(QA)等任务,我们可以设置更低的temperature值,以促使模型基于事实返回更真实和简洁的结果。对于诗歌生成或其他创造性任务,你可以适当调高temperature参数值。翻译自OpenAI官方文档链接:https://platform.openai.com/docs/quickstart

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。

Others are asking
汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来
以下是国内外的大语言模型汇总: 国外大语言模型: GPT4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。 国内大语言模型: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 讯飞星火:目前体验效果较好。 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 清华 ChatGLM 。 此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
2025-02-19
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
现在大语言模型的跑分对比
对比不同大语言模型的性能需要考虑多个维度,包括但不限于以下方面: 1. 理解能力:评估对语言的语法、语义、上下文和隐含意义的理解程度。 2. 生成质量:检查生成文本的流畅性、相关性和准确性。 3. 知识广度和深度:掌握广泛主题的知识程度,以及对特定领域或话题的理解深度。 4. 泛化能力:处理未见过的任务或数据时的表现。 5. 鲁棒性:应对错误输入、对抗性输入或模糊不清指令的能力。 6. 偏见和伦理:生成文本时是否存在偏见,是否遵循伦理标准。 7. 交互性和适应性:在交互环境中的表现,包括对用户反馈的适应性和持续对话的能力。 8. 计算效率和资源消耗:考虑模型大小、训练和运行所需的计算资源。 9. 易用性和集成性:是否易于集成到不同应用和服务中,提供的 API 和工具的易用性。 为了进行有效的比较,可以采用以下方法: 1. 标准基准测试:使用如 GLUE、SuperGLUE、SQuAD 等标准的语言模型评估基准,它们提供统一的测试环境和评分标准。 2. 自定义任务:根据特定需求设计任务,评估模型在特定领域的表现。 3. 人类评估:结合人类评估者的主观评价,特别是在评估文本质量和伦理问题时。 4. A/B 测试:在实际应用场景中,通过 A/B 测试比较不同模型的表现。 5. 性能指标:使用准确率、召回率、F1 分数、BLEU 分数等性能指标来量化比较。 当前领先的大型语言模型的排行榜,例如聊天机器人竞技场,由伯克利的团队管理,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋中的类似。在排行榜中,顶部多为专有模型,下方有开放权重的模型。 大语言模型的特点包括: 1. 架构:有 encoderonly、encoderdecoder、decoderonly 等,如 BERT 是 encoderonly 模型,google 的 T5 是 encoderdecoder 模型,众多 AI 助手多为 decoderonly 模型。 2. 数据和参数:预训练数据量大,往往来自互联网,包括论文、代码、公开网页等,参数多,如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。
2025-02-18
我想知道全世界最新的AI资讯
以下是为您提供的全世界最新的 AI 资讯: 2024 年 10 月 1 日:Notion 近期进行了重构更新,增强了内置 AI 功能,采用对话式交互,用户可通过聊天与 AI 进行工作安排,并能跨页面、跨应用调用素材。但写作辅助功能在复杂文本处理上存在局限。Notion 以出色的 UX 设计和社区支持在效率软件领域领先。 推荐 6 个精准的海外 AI 信息渠道,包括 TechURLs(科技媒体汇总)、Toolify.ai(AI 产品导航和排行榜)、SimilarWeb(数据分析工具)、A16Z(硅谷知名投资机构)等,适合对 AI 感兴趣的读者和行业从业者。 12 月 25 日: AI 绘画:Recraft AI 更新了 60 种新的图像风格,用户可生成和编辑插画、海报、产品周边等,每日有免费试用点数,允许商业使用。地址:https://www.recraft.ai/ AI 公文智能体:学习强国 x 百度 AI 推出的“学习强国公文助手”在文小言 APP 正式上线,可进行文汇检索、AI 公文书写、AI 公文润色等。使用方式:下载文小言 APP,找寻学习强国公文助手。 关于最新的国内大模型排名,可能会有变化。您可以查阅相关科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台获取最新信息。在通往 AGI 之路的知识库里,会定期更新相关排名报告。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-01-23
比H200更先进的GPU是什么
目前比 H200 更先进的 GPU 是英伟达推出的 Blackwell B200 GPU。 Blackwell B200 GPU 具有以下优势: 1. 性能强大:拥有 2080 亿个晶体管,能提供高达 20 petaflops 的 FP4 性能,而 H100 仅为 4 petaflops,性能提升达 5 倍。 2. 效率提升:将两个 B200 与单个 Grace CPU 相结合的 GB200,能为 LLM 推理工作负载提供 30 倍的性能,同时大大提高效率,成本和能耗降低了 25 倍。 3. 训练能力:可以训练更大、更复杂的模型,一个 GB200 NVL72 机柜可以训练 27 万亿参数的模型,相当于能训练近 15 个 GPT4 这样的模型。 它采用台积电 4NP 工艺节点,其中一个关键改进是采用了第二代 Transformer 引擎,对每个神经元使用 4 位(20 petaflops FP4)而不是 8 位,直接将算力、带宽和模型参数规模提高了一倍。此外,还推出了由 Blackwell 组成的 DGX 超算,如 DGX GB200 系统,具有强大的计算和扩展能力。
2024-12-23
目前最先进的AI自动生成视频的软件
目前较为先进的 AI 自动生成视频的软件有以下几种: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,能在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,收费,年初在互联网爆火。由一家总部位于旧金山的 AI 创业公司制作,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能通过文字、图片等方式生成 4 秒左右的视频,致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。官方网站:https://runwayml.com/ 。Gen1 的主要能力有视频生视频、视频风格化、故事版、遮罩等,仅支持视频生视频是 Gen1 和 Gen2 的最大差异。Gen1 使用流程可参考:Gen1 能力介绍:https://research.runwayml.com/gen1 ;Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 ;也可通过视频学习:https://youtu.be/I4OeYcYf0Sc 。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 此外,还有以下一些相关软件: |网站名|网址|费用|优势/劣势|教程| |||||| |luma||30 次免费|| |Kling|kling.kuaishou.com||支持运动笔刷,1.5 模型可以直出 1080P30 帧视频|| |hailuoai|https://hailuoai.video/|新账号 3 天免费,过后每天 100 分|非常听话,语义理解能力非常强|| |Opusclip|https://www.opus.pro/||利用长视频剪成短视频|| |Raskai |https://zh.rask.ai/||短视频素材直接翻译至多语种|| |invideoAI |https://invideo.io/make/aivideogenerator/||输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频|| |descript |https://www.descript.com/?ref=feizhuke.com|||| |veed.io|https://www.veed.io/|一次免费体验|自动翻译自动字幕|| |clipchamp |https://app.clipchamp.com/|免费,高级功能付费|| |typeframes |https://www.revid.ai/?ref=aibot.cn|有免费额度|| 更多的文生视频的网站可以查看这里: 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-08
目前最先进的算法模型是什么
目前较为先进的算法模型包括: 1. GPT4:是 OpenAI 最新且最强大的模型。 2. GPT3.5Turbo:为 ChatGPT 提供支持,专为对话模式优化。 大模型具有以下特点: 1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。 2. 参数众多:如 OpenAI 在 2020 年发布的 GPT3 已达到 170B 的参数。 在模型架构方面: 1. encoderonly 模型:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 2. encoderdecoder 模型:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是 Google 的 T5。 3. decoderonly 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此架构。 在模型部署方面: 由于大模型参数众多,如 GPT2 有 1.5B 参数,LLAMA 有 65B 参数,因此在实际部署时会进行模型压缩。在训练中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点,可使用内存占用更小的数据类型,如 16 位浮点数,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2024-10-29
现在中国可以使用的相对较先进的AI音乐制作网站,推荐3个
以下为您推荐 3 个中国可以使用的相对较先进的 AI 音乐制作网站: 1. UDIO.com:目前最先进的 AI 音乐生成平台之一,音质优异,人声和器乐质量极高,功能全面。支持上传音轨、REMIX、INPAINT 等高级功能,允许细致地控制音乐生成过程,但有一定技术门槛。 2. SUNO.ai:用户数量众多、广受欢迎的 AI 音乐生成平台。操作方便,支持多语言,能够一次生成完整曲长的音乐,但音质相对较差。 3. Microphonestudio.app:无需昂贵的录音设备即可进行多轨录音。
2024-10-28
现在最先进的提示词技术是什么?
目前较为先进的提示词技术包括以下几种: 1. 思维链(Chain of Thought, CoT):能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。 2. 思维树(Tree of Thoughts, ToT):可以应对复杂的商业问题,充分利用 AI 的潜力。 3. 思维图(Graph of Thoughts, GoT):帮助 AI 处理复杂推理。 4. 自生成上下文学习提示(SelfGenerated In1context Learning Prompt):核心在于自动生成示例,辅助模型更准确地理解和处理信息,输出更丰富和精准的内容。 5. 分解提示(Decomposed Prompting):把复杂任务或问题分解成更小、更易于管理和理解的部分,分别处理以提高模型执行指令的准确性。 6. 助产式提示词(Maieutic Prompting):灵感来源于苏格拉底的助产术教育模式,强调通过提问而非直接给出指令的方式来引导思考和学习。 7. 元提示(Meta Prompting):通过元模型向各个领域的专家模型发起咨询,获取深入的见解和知识。 8. 演绎验证(Deductive Verification):避免在使用 CoT 推理过程中出现逻辑漏洞和缺少逻辑推理链条的问题,确保推理过程合理且连贯,提高推理结果的可靠性。 9. CCoT:通过正反力矩的机制,指导模型识别正确与错误,方法简洁直观。 10. PoT:是思维链技术的衍生,特别适用于数值推理任务,引导模型生成一系列代码,通过代码解释器工具进行最后运算,提升模型在数学问题求解上的表现。
2024-09-30
chatgpt4.0.1有什么新功能,比chatgpt4先进在哪些方面
ChatGPT 4.0.1 相较于 ChatGPT 4 具有以下新功能和先进之处: 1. 大大减少了幻觉,在内部对抗性设计的事实性评估中得分更高,比最新的 GPT3.5 高 19 个百分点。 2. 在遵循用户意图的能力方面有很大改进,在 70.2%的提示中,产生的响应比 GPT3.5 更受欢迎。 3. 在各种语言中的表现更优,包括低资源语言。 4. 知识更新方面,ChatGPT 4.0.1 知识更新到 2023 年 12 月,而 ChatGPT 4o 的知识更新到 2023 年 10 月。 需要注意的是,尽管 ChatGPT 4.0.1 有这些优势,但它仍存在与早期 GPT 模型类似的局限性,如对事实产生“幻觉”和出现推理错误等,在使用其输出时应谨慎。
2024-09-14