Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

影视后期相关的模型

Answer

以下是为您整理的影视后期相关模型的信息:

Meta Movie Gen 文生视频模型

  • 这是 Meta 发布的“迄今为止最先进的媒体基础模型(Media Foundation Models)”,但目前未公开上线。
  • 由视频生成和音频生成两个模型组成。
    • Movie Gen Video 是 30B 参数的 Transformer 模型,能从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。可进行精确视频编辑,如添加、删除或替换元素,或进行背景替换、样式更改等全局修改。在保持角色身份一致性和运动自然性方面取得 SOTA 性能。
    • Movie Gen Audio 是 13B 参数的 Transformer 模型,能接受视频输入及可选的文本提示,生成与视频同步的高保真音频。
  • 通过预训练-微调范式完成。预训练阶段在海量的视频-文本和图像-文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段精心挑选小部分高质量视频进行有监督微调,以提升生成视频的运动流畅度和美学品质。
  • 还引入了流匹配作为训练目标,使得视频生成的效果在精度和细节表现上优于扩散模型。

Stable Diffusion 相关模型

相关媒体报道:

  • 量子位:Meta 版 Sora 无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92 页论文无保留公开 https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg
  • 歸藏的 AI 工具:Meta 发布视频生成和编辑模型,来看看项目负责人的论文导读 https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g

参考链接:https://ai.meta.com/research/movie-gen/

Content generated by AI large model, please carefully verify (powered by aily)

References

新王登基-Meta发布Meta Movie Gen文生视频模型

[title]新王登基-Meta发布Meta Movie Gen文生视频模型[heading1]Create sound effects and soundtracks创建音效和配乐(下面的视频[heading2]用Llama3架构做视频模型具体来说Movie Gen由视频生成和音频生成两个模型组成。Movie Gen Video:30B参数Transformer模型,可以从单个文本提示生成16秒、16帧每秒的高清视频,相当于73K个视频tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得SOTA性能。Movie Gen Audio:13B参数Transformer模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。Movie Gen Video通过预训练-微调范式完成,在骨干网络架构上,它沿用了Transformer,特别是Llama3的许多设计。预训练阶段在海量的视频-文本和图像-文本数据集上进行联合训练,学习对视觉世界的理解。这个阶段的训练数据规模达到了O(100)M视频和O(1)B图像,用以学习运动、场景、物理、几何、音频等概念。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。扩散模型通过从数据分布逐渐加入噪声,然后在推理时通过逆过程去除噪声来生成样本,用大量的迭代步数逐步逼近目标分布。流匹配则是通过直接学习样本从噪声向目标数据分布转化的速度,模型只需通过估计如何在每个时间步中演化样本,即可生成高质量的结果。

新王登基-Meta发布Meta Movie Gen文生视频模型

[title]新王登基-Meta发布Meta Movie Gen文生视频模型Meta发布Meta Movie Gen文生视频模型,Meta表示,这是“迄今为止最先进的媒体基础模型(Media Foundation Models)”注意:模型未公开上线https://ai.meta.com/research/movie-gen/[7586_1728057079_raw.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/MGcKbwcbxo7Gz6x4mbxcDv1tnzg?allow_redirect=1)媒体报道:量子位:Meta版Sora无预警来袭!抛弃扩散模型,音视频生成/画面编辑全包,92页论文无保留公开https://mp.weixin.qq.com/s/rs7JQigqHO9yT_0wbF6cTg歸藏的AI工具:Meta发布视频生成和编辑模型,来看看项目负责人的论文导读https://mp.weixin.qq.com/s/BLXNgCW0vAHNZtHgd4623g

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai | Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models - Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD - WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站- AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

Others are asking
可灵做影视教程
以下是关于可灵做影视教程的相关内容: 一、AIGC 电影化叙事实战教程 1. 什么是电影感和 AI 感 电影感:一切元素为叙事服务,将观众沉浸在故事中。 AI 感:每个镜头的画面是固定镜头,运动幅度小,易引起视觉疲劳;镜头间不构成视听语言,画面跳跃,未为故事服务;有过于明显的不和谐画面元素,如色调、角色特征、转场形式等。 2. 故事叙事 采用三幕式结构,包括设定、冲突和解决三个阶段,为叙事提供清晰节奏感。 塑造角色弧光,展现角色心理变化和成长历程,引发观众情感共鸣。 运用隐喻和主题,以艺术性方式传递深层含义和核心思想。 3. 画面分镜 先找到桥段中最重要的画面。 进行分镜设计,通过不同视角和构图增强叙事感。 掌握镜头调度,分解不同镜头切换方式,打造流畅视觉节奏。 保持视觉风格一致性,通过灯光、色调、滤镜统一确保观众视觉体验连贯。 4. 音乐与音效 把控情感节奏,用音乐引导观众情绪,配合故事起伏增强感染力。 设计音效细节,通过环境音、背景音营造氛围,增添真实感。 实现音乐与视觉配合,用音效表达故事内容。 二、AI 带你穿越时空,去拥抱儿时的自己 方法一:快影(可灵)处理图片 步骤: 1. 打开快影(需先通过内测申请),选择 AI 创作。 2. 选择 AI 生成视频。 3. 选择图生视频。 4. 上传处理好的图片,填写想要的互动动作和效果,点击生成视频。 5. 排队等待生成结束,点击下载。 效果展示:因图片本身效果差,转换视频后效果不太理想。 三、AI 视频相关软件教程 可灵相关教程链接: 其他工具教程链接:
2024-12-19
我是一个影视剧宣传专员,请问我应该如何运用AI工具提高我的创意、策划水平和工作效率?
以下是一些运用 AI 工具提高影视剧宣传专员创意、策划水平和工作效率的建议: 1. 团队分工方面: 制片人负责影片的整体制作管理,包括团队组建、日程安排、信息收集、资料整理以及在岗位工作缺失时及时补上,对所有角色场景进行清晰梳理,把控进度,并明确每个成员的技能和工作安排。 图像创意人员负责用 AI 生成富有想象力的角色和场景等画面,并提前储备大量素材,能够快速生成各种比例的图像。 视频制作人员要熟悉运营各种视频工具,根据图像素材选择合适工具及精准控制功能,控制画面变化和走向。 编剧负责撰写剧本,包括故事情节、角色串联、人物台词等,善于运用 AI 文本工具,具备很强的故事构思和台词文本能力。 配音和配乐人员负责背景音乐、音效、角色配音、声音克隆等工作。 剪辑师负责后期剪辑,包括镜头选择、节奏控制和音效配合。 2. 任务划分与配合: 可以按照功能和剧本划分任务,例如编剧创作剧本和图像创意同时进行,根据生成的角色编写故事。 采用远程协作的方式,通过共享文档等工具进行沟通和协作。 3. 利用 AI 工具: 可以使用 GPT 完成脚本,但需要大量人工干预。 利用 Midjourney(MJ)出图,经过人工干预和调词。 使用声音类 AI 工具进行配音和配乐的相关工作。 运用 AI 生成富有想象力的角色和场景等画面。 4. 参考成功案例: 例如 B 站 up 主村长托马斯对 Bard 工具的使用心得。 晴岚通过让 GPT 写视频内容、细化分镜内容并提炼响亮名字制作宣传片的经验。 学习 AIGC 运营中透视运营数据、调整策略、寻找对标、紧跟趋势、装修主页等方面的方法。 借鉴基于微信机器人的微信群聊总结助手这类实践项目。
2024-12-15
影视翻译音频生成字幕
以下是关于影视翻译音频生成字幕的相关信息: 出门问问语音合成(TTS)API: 调用参数及说明: gen_srt:控制是否生成对应的 srt 字幕文件。当 ignore_limit 为 true 时,audio_type 为 wav 可以返回字幕,其他类型不行。默认不生成字幕文件,生成字幕文件需额外付费,价格详情参考报价页。srt 文件地址通过 response header 返回。默认值:false,可选值:false/true。 merge_symbol:粗粒度合成参数,默认为 false。指定为 true 时,语气停顿更接近真人效果,merge_symbol 开启会导致 symbol_sil 参数无效。默认值:false,可选值:false/true。 srt_len:生成字幕的最大长度,中文字幕遇到特定符号会自动分句拆分字幕。 streaming:是否流式输出,默认为 false。指定为 true 时,ignore_limit 为 true 且 audio_type 不为 wav 时,接口流式输出。 Request Header 设置。 视频自动字幕工具推荐: 1. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 2. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义视频字幕样式。 3. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 4. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可根据自身需求选择。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-10
影视解说ai工具
以下为您介绍一些影视解说相关的 AI 工具: Wavel Studio:支持 30 多种语言的配音,音质自然流畅,能自动去除背景噪音和杂音,提供添加字幕和文本叠加层的工具,界面友好且有多种自定义选项。 Elai.io:支持 65 多种语言的配音,音色和语调真实,能自动将唇形与语音同步,生成字幕以提高视频的可访问性,支持多位配音者,适合复杂对话场景。 Rask AI:支持 130 多种语言的配音,包括稀有和濒危语言,采用先进语音合成技术,音质高保真,提供语音参数自定义和音效添加工具,与多种视频编辑平台和工作流程整合。 Notta:提供快速实惠的多语言配音解决方案,保留原声说话风格和细微差别,提供调整语音速度和音调的工具,支持批量处理,高效完成多视频配音。 Dubverse:支持 60 多种语言的配音,音质接近真人,提供文本转语音和语音克隆功能,提供语音参数自定义和情感添加工具,与多种视频平台和社交媒体渠道整合。 此外,还有一些 AI 视频工具如 Pika、Pixverse、Runway、SVD 可用于生成不同类型的视频画面,包括剧情片、科幻片、战争片、奇幻片、纪录片、风光片、美食片等。例如: 科幻片:远景中太空舰队在星系间交战,特写里宇航员头盔上的反射显示着控制台的紧急指示等。 战争片:全景中士兵们在战壕中准备迎击,中景里一名士兵在战壕中查看地图与战友策划行动等。 奇幻片:中景里一群奇幻生物在森林中追逐,特写中一只小精灵的翅膀闪耀光芒等。 纪录片:远景中壮丽的山脉在晨曦中苏醒,特写里一朵野花在微风中摇曳等。 美食片:中景里厨师熟练切割食材,特写里刚出炉蛋糕表面的细腻纹理等。
2024-11-30
影视剪辑短片用什么AI软件
以下是一些可用于影视剪辑短片的 AI 软件: 1. 视频生成工具:Pika、Pixverse、Runway、SVD 可用于生成不同风格和类型的视频片段,如奇幻风格、风光片、纪录片、美食片等。 2. 声音制作软件: 11labs(官网:https://elevenlabs.io/)可用于英文对白制作,但存在声音缺乏情绪和情感的问题,需要通过标点符号调整语音效果,且需不断抽卡尝试。 国内的出门问问的魔音工坊,具有情绪调节控件。 3. 剪辑软件: 对于 1 3 分钟的短片,剪映较为方便。 对于更长篇幅或追求更好效果的影片,可能需要使用 PR/FCP/达芬奇等传统剪辑软件。 此外,在创作 AI 短片时,除了使用上述工具,还需考虑故事的来源和剧本写作。故事来源可以是原创(如自身经历、梦境、想象等)或改编(如经典 IP、名著、新闻、二创等)。剧本写作方面,虽然编剧有一定门槛,但短片创作可从自身或朋友经历改编入手,多与他人讨论并不断实践总结。
2024-11-04
AI赋能影视创作流程
以下是 AI 赋能影视创作的流程: 在分镜管理方面: 导演使用增强现实界面来规划场景和指导演员,增强现实技术让导演能直观地设计和预览复杂场景。 编剧通过 AI 助手生成剧本创意和对话,人工智能成为编剧的新伙伴,激发创意,优化叙事。 观众通过脑机接口直接体验电影情感和场景,脑机接口技术可能将观众带入完全沉浸的电影体验。 在视频制作管理流程中: 小组讨论会上,创作者讨论使用区块链保护电影版权的策略,区块链技术保护创作不被非法复制,确保创作者权益。 年轻观众在虚拟现实电影节中探索不同的电影世界,虚拟现实电影节让观众在家中就能穿越至各个电影世界。 观众可在手中的智能设备上,通过应用选择观看个性化推荐的电影,智能推荐系统根据观众的喜好和观影历史定制电影列表。 影视制作人在全息投影上协作,编辑电影场景,全息技术让电影制作变得更加直观和协同。 在《李清照》AI 视频创作流程项目中: 文字方面使用 GPT 脚本。 图片使用 Midjourney。 视频使用 Runway。 音频使用 ElevenLabs、剪映。 剪辑使用剪映。 还用到其他工具如 PS、AE。 在故事创作方面: 按照特定模板生成穿越故事的 Prompt,包括标题、设置、主角、反派角色、冲突、对话、主题、基调、节奏和其它等方面的设定。 根据模板生成的内容填充为特定题材的小说,并进行分章节,生成小说目录。
2024-10-28
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。
目前在游戏领域最前沿的 AI 技术点主要包括以下几个方面: 1. 探索将游戏环境中的成果迁移至现实世界:电子游戏作为人工智能算法的测试场,为人工智能模型的构建与训练提供了理想化的场所。但将游戏中的技术推广到现实世界应用仍面临诸多挑战。 2. 利用 AIGC 技术实现游戏产业的生产力革命: 借助人工智能的内容创作工具,降低开发成本、缩短制作周期、提升游戏质量和完成度,带来新体验,创造新游戏类型和交互方式。 应用于电子游戏开发的多个方面,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等。 3. 为通用人工智能的孵化提供帮助:经过多个复杂游戏训练后的“玩游戏”的人工智能体。 4. 借助人工智能完成大型游戏的制作:如《微软模拟飞行》通过与 blackshark.ai 合作,利用人工智能从二维卫星图像生成无限逼真的三维世界,且模型可随时间改进。 5. 生成式人工智能模型在游戏资产中的应用:出现了用于游戏中几乎所有资产的生成式人工智能模型,包括 3D 模型、角色动画、对话和音乐等。 6. 降低游戏制作的内容成本:整合生成式 AI 可大幅降低制作游戏的时间和成本,例如为一张图片生成概念图的时间从 3 周下降到 1 小时。
2024-12-22
音乐后期AI软件
以下为您介绍一些音乐后期 AI 软件: Musico:由 AI 驱动的软件引擎,可生成音乐,能对手势、动作、代码或其他声音作出反应。 Yousician:全球最大的音乐教育平台。 Tape It:用于创作歌曲和音频录制的应用程序。 Sessionwire:提供无缝录音室体验的一体化在线协作平台。 Aflorithmic:专业音频、语音、声音和音乐的扩展服务。 Audio Design Desk:视频编辑的音频解决方案。 Never Before Heard Sounds:由 AI 驱动的音乐工作室。 NeuralDSP:通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 Neutone:AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 RoEx:为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 LANDR:为创作者提供的在线音乐软件,包括音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 Accusonus(被 Meta 收购):为创作者提供的音频和视频编辑软件。 Moises:音乐人的应用程序。 Waveshaper(前身为 Tonz):实时神经信号处理。 Sonible:奥地利制造的音频软硬件。 在一些项目中,还会用到以下软件: Audition:用于音频处理。 Studio One:由 PreSonus 公司开发的专业 DAW 软件,功能全面,适合编曲、录音、混音和母带处理等音乐制作流程。 Waves XNoise:由 Waves 公司出品的降噪 VST 插件,用于降低音频中的噪声,操作简单。 iZotope RX 11:专业的音频修复和降噪软件,具备多种音频修复和编辑工具。 iZotope Ozone 11:专业的母带处理软件,提供全面的母带处理工具,提升音频整体质量。
2024-10-17
lora训练的数据集没有跳绳动作,后期如何使用lora生成跳绳的图,需求要保持人脸和服装跟训练人物一致
如果您的 Lora 训练数据集没有跳绳动作,但希望生成跳绳的图并保持人脸和服装与训练人物一致,可以参考以下步骤: 1. 首先,在已有训练集中选择一两张合适的形象图片,用 PS 把人物肢解处理一下,得到各部位的图片。 2. 在 Tripo 中逐个上传图片转换成 3D 模型(由于全身图单次转换 3D 目前效果较差,所以需逐个分部转换)。 3. 利用 3D 软件将模型整合,绑定骨架。 4. 最后对照所需的分镜图凹好造型,再进行重绘。重绘时可以使用 cref cw0 来保证基础面部。 另外,训练 Lora 时需要注意: 1. 对于一个固定的形象,面部五官最重要,其次是体型、服装、配饰等。收集训练集时,收集形象的头部图片很重要。 2. 给图片打标时,要仔细检查每一张图片,打标的好坏会影响到后面人物 Lora 的泛化性。若想让人物有更多变化,描述应尽量详细。
2024-08-12
国内AI工具及相关网站有哪些?
以下是国内部分 AI 工具及相关网站: |排行|产品名|分类| |||| |15|墨刀 AI|设计工具| |16|无限画|图像生成| |17|autoDL 云服务租用|Agent| |18|百度 Chat|AI ChatBots| |19|360AI 搜索(没接 GA)|搜索| |20|AIbot ai 工具集|导航网站| |21|创客贴 AI|设计工具| |22|MasterGo|设计工具| |23|美图设计室|图像编辑| |24|魔搭社区阿里达摩院|AI 训练模型| |25|即时 AI 设计|设计工具| |26|Boardmix 博思 AI 白板|PPT| |27|百度飞桨 AI Studio|AI 学习| |28|字节扣子|| |29|提示工程指南|Prompts| |30|toolsdar|导航网站| |31|autoDL 云服务租用|| |32|AIbot ai 工具集|导航网站| |33|同花顺问财|金融| |34|魔搭社区阿里达摩院|AI 训练模型| |35|MasterGo|设计工具| |36|即时 AI 设计|设计工具| |37|百度 Chat|AI ChatBots| |38|创客贴 AI|设计工具| |39|即梦 AI(剪映)|其他视频生成| |40|可灵 AI|其他视频生成| |41|360 快剪辑|视频编辑| |42|Dify.ai|Agent| |43|Vast(算力)|| |44|提示工程指南|Prompts| |45|站酷海洛|资源| |46|toolsdar|导航网站| |47|百度飞桨 AI Studio|AI 学习| |48|Boardmix 博思 AI 白板|PPT| |49|讯飞听见|转录| |50|帆软战略|电商| |51|帆软数据|数据分析| |52|360 苏打办公|生产力| |53|标小智 LOGO 生成|图像生成| |54|edrawsoft|思维导图| |55|彩云|通用写作| |56|虎课网免费在线视频教程|AI 学习| |57|xmind|思维导图| |58|秘塔写作猫|通用写作| |59|Pixso AI|设计工具| |60|火山翻译|翻译| |61|aippt|PPT|
2025-01-30
请联网搜索近期有什么AIGC相关的比赛活动
以下是近期的 AIGC 相关比赛活动: 【线上⬆️】,时间为 9 月 1 日 9 月 24 日。利用 AI 复原《山海经》中的经典神兽,赢取 35 万元现金和实体大奖,获奖作品将获得全网流量曝光,由中央美术学院等权威高校支持。 ,时间为 9 月 3 日 11 月 3 日。一等奖 2 名,奖杯、荣誉证书及 10000 元奖励;二等奖 2 名,奖杯、荣誉证书及 8000 元奖励;三等奖 6 名,奖杯、荣誉证书及 3000 元奖励。 【线上⬆️】 。 【线上⬆️】,时间为 8 月 22 日 9 月 22 日。全球 AI 视觉创意大赛(瓦卡奖 VACAT Vision Arts Created by AI Technology),致力于构建 AI 视觉创意界的“奥斯卡”平台,推动 AI 视觉技术的应用与创新。 ,截止时间为 10 月 31 日。作品提交:sipsac.cn,主题为“潮起东方创益未来”,板块包括美丽世界、文化中国、科技生活,类型有平面、音视频、数字创新,金奖 3 万、银奖 1 万、铜奖 5 千,另外有全场大奖 10 万。 ,截止时间为 2024 年 11 月 10 日。让创意点亮传统,传承经典,一等奖 10000 元,二等奖 5000 元,三等奖 1000 元。 ,作品提交时间为 10.11 11.30,专家评审时间为 12.1 12.9,成果发布时间为 12.10 。 ,时间为 1 月 24 日 2 月 28 日。需用魔搭平台【AIGC 专区】麦橘超然模型作底模训练 LORA 模型,描绘心中理想世界,风格不限。提交 LoRA 及 6 张以上高质量作品,单张图片分辨率不低于 1024x1024 像素,每组作品展现一个世界观场景;避免鲜血、骷髅等敏感元素。一等奖 1 名,奖金 5000 元 + 证书;二等奖 3 名,奖金 3000 元 + 证书;三等奖 10 名,奖金 1000 元 + 证书。魔搭社区 AIGC 代言人奖:作品发小红书带一丹一世界话题并@魔搭 ModelScope 社区官方,浏览量满 800,前 20 名可得 300 元天猫超市卡。
2025-01-30
我是做供应链相关的岗位,AI可以为我的职业赋能那些能力呢
AI 可以为您从事的供应链相关岗位赋能以下能力: 1. 预测性维护:通过分析设备运行数据预测可能的故障,帮助避免供应链中的生产停机。 2. 质量控制:检测产品缺陷,确保供应链中产品的高质量。 3. 优化供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等方案,提高供应链效率和降低成本。 在制造业领域,AI 的应用包括: 1. 产品设计和开发:利用 AI 生成工具快速生成产品的 3D 模型、渲染图、插图等设计元素,提高产品设计效率。 2. 工艺规划和优化:结合大语言模型生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:分析设备运行数据预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。 在医疗药品零售领域,AI 的应用有: 1. 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 2. 药品库存管理:通过分析历史销售数据、天气、疫情等因素,预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 3. 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 4. 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 5. 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 6. 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 7. 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。
2025-01-26
近期国内颁布了什么AI相关政策
近期国内颁布的 AI 相关政策包括: 1. 互联网信息服务算法推荐管理规定(算法推荐规定),于 2023 年 3 月 1 日生效。 2. 互联网信息服务深度合成管理规定(深度合成规定),于 2023 年 1 月 10 日生效。 3. 生成式人工智能服务管理暂行办法(生成式 AI 办法),于 2023 年 7 月 13 日公布并于 2023 年 8 月 15 日生效。 4. 生成式人工智能服务安全基本要求(征求意见稿),于 2023 年 10 月 11 日公开征求意见,意见反馈截止日期为 2023 年 10 月 25 日。 5. 科技伦理审查办法(试行)(征求意见稿)(伦理审查办法(草案)),于 2023 年 4 月 14 日公开征求意见,意见反馈截止时间为 2023 年 5 月 3 日。 6. 国家人工智能产业综合标准化体系建设指南(征求意见稿),于 2024 年 1 月 17 日公开征集意见,意见反馈截止时间为 2024 年 1 月 31 日。 这些政策的适用范围如下: 1. 算法推荐规定适用于任何使用算法推荐技术在中国境内提供互联网信息服务的行为。 2. 深度合成规定适用于任何使用深度合成技术在中国境内提供互联网信息服务的行为。 3. 生成式 AI 办法适用于使用生成式人工智能技术在中国境内向公众提供服务的行为,但并不包括尚未用于在中国境内向公众提供服务的生成式人工智能技术的研究和开发。 4. 伦理审查办法(草案)一旦实施,将适用于任何涉及人类、实验室动物或其他涉及伦理风险的科学技术活动。 在地域范围方面,人工智能法规并不限定其仅适用于中国个人及实体,外国个人或实体如涉及使用人工智能技术在中国境内提供服务或研发人工智能技术,也受到监管。
2025-01-25
免费的网页爬虫相关Ai工具
以下是一些免费的网页爬虫相关 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制您的专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目方面: 在里有用 Cursor 做的网页浏览工具的参考实现。其中为实现对含有 JavaScript 内容的网页抓取,使用 playwright 之类的浏览器而非 Python 自己的 request 库,同时为方便 LLM 理解和抓取,将网页内容按规则转化成 markdown 格式保留细节基础信息。 对于搜索工具,duckduckgo 的免费 API 被用于参考实现,因其搜索质量优于 Bing 和 Google 的 API。
2025-01-25
有与网页爬虫相关的AI工具吗
以下是一些与网页爬虫相关的 AI 工具: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ GPT Crawler:https://github.com/BuilderIO/gptcrawler 能够利用爬虫,自动抓取与整合指定 URL 地址中的各种信息,并生成一个 output.json 的数据文件。将其喂给 ChatGPT,便可快速定制专属 GPT,打造个人知识库或者智能助理。 此外,在开源项目中也有相关工具,如: 在里有用 Cursor 实现的网页浏览工具参考,其中为实现对含有 JavaScript 内容的网页抓取,使用了 playwright 之类的浏览器,将网页内容转化成 markdown 格式以支持 LLM 后续的爬虫。 对于搜索工具,duckduckgo 的免费 API 可避免一些质量问题。
2025-01-25