Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能

Answer

具身智能是人工智能领域的一个子领域。

它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。

具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。

具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。

具身智能在机器人领域(服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。通过具身智能,机器人能更好地理解和适应人类生活环境,提供更自然有效的人机交互,也能创造更具沉浸感和交互性的体验。

具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下有不同形态的硬件本体适应环境。

具身智能的行动可分为“感知-决策-行动-反馈”四个步骤,形成一个闭环。

在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合。与传统深度学习模型相比,LLM-based Agent 能主动感知和理解所在物理环境并互动,进行“具身行动”。

尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体;“智能”,即大模型、语音、图像、控制、导航等算法;“环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。感知模块

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
最新具身智能新闻
以下是关于具身智能的最新新闻: 具身智能是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,而具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。人形机器人是具身智能的代表产品。 具身智能的三要素包括本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下会有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。 具身智能体的行动分为“感知决策行动反馈”四个步骤,感知模块负责收集和处理信息,通过多种传感器感知和理解环境。常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器、麦克风等。 最近,具身智能的概念很火。例如稚晖君开源人形机器人全套图纸+代码引发圈内热议,各类具身智能产品如李飞飞的 Voxposer、谷歌的 RT1 和 RT2、RTX、字节跳动的 Robot Flamingo、斯坦福的 ACT 和卡耐基梅隆的 3D_diffuser_act 等,在不同任务和场景中展示了强大能力,并有潜力带来革命性变革。本文拆分为上下两篇,明天会更新下篇,聚焦人机交互、发展讨论。本文部分参考中国信息通信研究院和北京人形机器人创新有限公司的《具身智能发展报告》。
2025-01-27
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂多变环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-12-31
基于多模态大模型的具身智能 技术原理是什么
基于多模态大模型的具身智能技术原理主要包括以下方面: 决策模块是具身智能系统的核心,负责接收感知模块的环境信息,进行任务规划和推理分析,以指导行动模块生成动作。早期决策模块主要依赖人工编程规则和专用任务算法,而基于近端策略优化算法和 Qlearning 算法的强化学习方法在具身智能自主导航等任务中展现出更好的决策灵活性,但在复杂环境适应能力等方面存在局限。 大模型的出现极大增强了具身智能体的智能程度,提高了环境感知、语音交互和任务决策能力。具身智能体的大模型是 AIGA,调用机械臂、相机等身体部件,其发展方向是视觉语言动作模型(VLA)和视觉语言导航模型(VLN)。 VLA 输入语言、图像或视频流,输出语言和动作,在统一框架内融合互联网、物理世界和运动信息,实现从自然语言指令到可执行动作指令的直接转换。 VLN 输入语言、图像或视频流,输出语言和移动轨迹,用于统一指令输入框架,使大模型直接生成运动方向、目标物体位置等操作信息。 Google Deepmind 从大模型入手打造具身智能,率先提出 Robotics Transformer 系列模型,如 RT1 等,并不断升级。RT1 基于模仿学习中的行为克隆学习范式,输入短的图像序列和指令,输出每个时间步的动作。随着数据量增加,有从分层模型过渡到端到端模型的趋势。 北大 HMI Lab 团队构建了全新的 RoboMamba 多模态大模型,使其具备视觉常识任务和机器人相关任务的推理能力。 在具身智能应用中,更强调“动态”学习方式,如强化学习、模拟学习等,让机器人与环境不断交互学习,通过奖励机制优化行为,获得最优决策策略,摒弃传统控制论算法物理建模的弊端。
2024-12-27
基于世界模型的具身智能 技术原理是什么
基于世界模型的具身智能技术原理主要包括以下方面: 谷歌发布的世界模型 Genie: 能够学习一致的动作空间,可能适合训练机器人,打造通用化的具身智能。 其架构中的多个组件基于 Vision Transformer构建而成,为平衡模型容量与计算约束,在所有模型组件中采用内存高效的 STtransformer 架构。 Genie 包含三个关键组件:潜在动作模型(Latent Action Model,LAM)用于推理每对帧之间的潜在动作;视频分词器(Tokenizer)用于将原始视频帧转换为离散 token;动态模型给定潜在动作和过去帧的 token,用来预测视频的下一帧。潜在动作模型以完全无监督的方式学习潜在动作。 相关论文《Genie:Generative Interactive Environments》已公布,论文地址为 https://arxiv.org/pdf/2402.15391.pdf,项目主页为 https://sites.google.com/view/genie2024/home?pli=1 ,论文的共同一作多达 6 人,包括华人学者石宇歌。 具身智能算法层: 机器人创业公司 Covariant 推出的首个机器人基础模型 RFM1 是基于真实任务数据训练的机器人大模型,共有 80 亿参数,是基于文本、图片、视频、机器人动作、传感器信息等多模态数据进行训练的 any to any 序列模型。 RFM1 将机器人的实际动作也视作 Token,其 token 包括多种模态,每个模块都有专门的 tokenizer 进行处理。操作只有一个——预测下一个 token。 RFM1 对物理世界的理解源自于其学习生成视频的过程,通过接受初始图像和机器人动作的输入,预测接下来视频帧的变化,掌握了模拟世界每个瞬间变化的低层次世界模型。 行业进展: 李飞飞在 AI 3D 生成领域的工作极大地加速了进展,通过对 3D 物体的生成所构建出的世界,再进行降维的视频生成,生成的视频自然符合物理世界的规律,生成的世界也可交互。 世界模型开启了在虚拟世界中预训练机器人的可能,这个虚拟世界完全符合物理规律,可以快速生成无限场景,支持并行训练多个任务,大幅降低试错成本,加速机器人的学习过程,为实现更复杂的机器人行为打开可能。这种进步正在催生新的应用可能,如更自然的人机交互界面、更安全的机器人控制系统、更高效的虚拟训练平台等。世界模型也在改变 AI 理解和交互世界的基本方式。
2024-12-27
具身智能
具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍: 1. 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 2. 核心要素: 智能体的“身体”或“形态”,包括物理形态(如机器人的机械结构)和虚拟形态(如模拟环境中的虚拟角色)。 身体不仅是互动手段,也影响智能体的学习和发展。 3. 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。 机器人学关注设计能自主行动和适应环境的机器人。 认知科学和神经科学探索大脑处理与身体相关信息的机制及应用于人造智能系统。 计算机视觉致力于开发算法,使智能体能够理解和解释视觉信息。 4. 应用领域: 机器人领域,如服务机器人、工业自动化和辅助技术等,能更好地理解和适应人类生活环境,提供更自然有效的人机交互。 虚拟现实、增强现实和游戏设计等领域,创造更具沉浸感和交互性的体验。 5. 特点: 即“具身+智能”,是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。 三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 四个模块为“感知决策行动反馈”,形成一个闭环。 6. 面临挑战: 如何设计智能体的身体以最大化其智能表现。 如何让智能体在复杂多变的环境中有效学习。 如何处理智能体与人类社会的伦理和安全问题。 人形机器人是具身智能的代表产品,不同环境下会有不同形态的硬件本体适应环境。在追求人工通用智能(AGI)的征途中,具身 Agent 正成为核心的研究范式,它强调将智能系统与物理世界紧密结合,能够主动感知和理解所在的物理环境并互动,产生具身行动。
2024-12-26
请描述具身智能的技术原理
具身智能是人工智能领域的一个子领域,其原理包括以下几个方面: 1. 强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能体的“身体”或“形态”很重要,它可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 2. 涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体能够理解和解释视觉信息的算法。 3. 以“具身+智能”的范式,将机器学习算法适配至物理实体,与物理世界交互。例如将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。 4. 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 5. 行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 6. 在追求人工通用智能(AGI)的过程中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用。但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2024-12-25
可以做一个小红书私信自动回复的ai程序或者智能体吗
在理论上是可以创建一个小红书私信自动回复的 AI 程序或智能体的。但这需要一定的技术知识和开发能力。 首先,您需要确定回复的规则和逻辑,例如根据关键词、常见问题类型等来设定回复内容。 其次,选择适合的技术框架和工具,比如使用自然语言处理(NLP)技术和相关的库。 然后,进行数据收集和预处理,以训练模型能够准确理解和回复私信。 不过,需要注意的是,小红书的使用规则可能对自动回复有一定的限制和要求,您需要确保您的程序或智能体的使用符合其规定。
2025-01-30
如何让 ai 做一个自己的智能ai 软件
要让 AI 做一个自己的智能 AI 软件,可以参考以下步骤: 1. 选择合适的平台:例如字节跳动旗下的扣子(Coze),其是新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。 2. 明确创建流程: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 3. 对于让 AI 写出想要的代码,可遵循以下.cursorrules 写法: 先说清楚自己是谁,告诉 AI 期待其具备的专业技能。 告诉 AI 要干什么,明确项目需求。 定好项目的“规矩”,强调代码规范。 明确文件存放位置。 指定使用的“工具”,如框架和库。 告诉 AI 怎么做测试。 推荐参考资料。 如有 UI 需求,补充相关要求。 4. 在与 AI 合作编程时,了解其边界和限制,遵循编程准则: 能不编,尽量不编。优先找线上工具、插件、本地应用,先找现成的开源工具或考虑付费服务,实在找不到再自己编程。以终为始,聚焦目标。
2025-01-29
智能体能干嘛
智能体(Agent)在人工智能和计算机科学领域是一种能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体具有以下关键组成部分和功能: 1. 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆用于上下文学习,长期记忆用于长时间保留和回忆信息,通常通过外部向量存储和快速检索实现。 4. 工具使用:学习调用外部 API 获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些具体的智能体应用示例: 1. 新年心语智能体: 功能包括写祝福语、做对联、预测新年运势、生成 AI 图片、陪用户闲聊等。 由于使用了代码节点访问外部 API,未提供体验。 2. 买买买!💥产品买点提炼神器强化版🚀智能体: 应用场景针对企业和品牌营销团队,尤其是活跃于小红书和抖音的市场推广者。 解决难以精准提炼产品卖点、不能以友好的用户侧表达讲述卖点、社交媒体营销文案和脚本创作无系统等痛点。 主要功能有产品卖点深度挖掘、优质买点文案生成、小红书笔记和抖音脚本生成,所有内容可一键同步到飞书。
2025-01-29
人工智能设计拜年PPT的软件
以下是一些可以用于人工智能设计拜年 PPT 的软件: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包含互动元素和动画效果,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关内容: 1. 2024 年 6 月 22 日更新的一批研究报告,如《》等。 2. 熊猫 Jay 编写的超全的 AI 工具生成 PPT 的思路和使用指南,介绍了 MindShow、爱设计、闪击、Process ON、WPS AI 等工具,并因该培训获得 1000 元奖励。原文:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA 公众号:熊猫 Jay 字节之旅
2025-01-28
智能合规性分析
以下是关于智能合规性分析的相关内容: 在金融服务业中,生成式 AI 能带来更好的合规性,具体表现为: 1. 高效筛查:迅速汇总个体在不同系统中的关键信息,让合规官员更快得出交易是否存在问题的答案。 2. 更准确地预测洗钱者:根据过去 10 年的可疑活动报告训练模型,创建对洗钱者构成的定义。 3. 更快的文档分析:分析大量文档,标记潜在问题或关注区域。 4. 培训和教育:开发培训材料,模拟真实场景,教育合规官员。 欧洲议会和欧盟理事会规定了人工智能的统一规则,包括成员国的市场监督管理机关和委员会应能提议联合行动,促进合规、查明不合规情况等。对于建立在通用人工智能模型基础上的人工智能系统,明确了国家和联盟一级的责任和权限。 未来,拥抱生成式 AI 的合规部门有望阻止每年在全球范围内非法洗钱的巨额资金。如今,合规软件主要基于“硬编码”规则,存在诸多问题,生成式 AI 可能带来改变。
2025-01-27