Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

具身智能

Answer

具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍:

  1. 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。
  2. 核心要素:
    • 智能体的“身体”或“形态”,包括物理形态(如机器人的机械结构)和虚拟形态(如模拟环境中的虚拟角色)。
    • 身体不仅是互动手段,也影响智能体的学习和发展。
  3. 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。
    • 机器人学关注设计能自主行动和适应环境的机器人。
    • 认知科学和神经科学探索大脑处理与身体相关信息的机制及应用于人造智能系统。
    • 计算机视觉致力于开发算法,使智能体能够理解和解释视觉信息。
  4. 应用领域:
    • 机器人领域,如服务机器人、工业自动化和辅助技术等,能更好地理解和适应人类生活环境,提供更自然有效的人机交互。
    • 虚拟现实、增强现实和游戏设计等领域,创造更具沉浸感和交互性的体验。
  5. 特点:
    • 即“具身+智能”,是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。
    • 三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。
    • 四个模块为“感知-决策-行动-反馈”,形成一个闭环。
  6. 面临挑战:
    • 如何设计智能体的身体以最大化其智能表现。
    • 如何让智能体在复杂多变的环境中有效学习。
    • 如何处理智能体与人类社会的伦理和安全问题。

人形机器人是具身智能的代表产品,不同环境下会有不同形态的硬件本体适应环境。在追求人工通用智能(AGI)的征途中,具身 Agent 正成为核心的研究范式,它强调将智能系统与物理世界紧密结合,能够主动感知和理解所在的物理环境并互动,产生具身行动。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体;“智能”,即大模型、语音、图像、控制、导航等算法;“环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。感知模块

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
什么是具身智能?
具身智能是人工智能领域的一个子领域。它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态(如机器人的机械结构),也可以是虚拟形态(如在模拟环境中的虚拟角色)。身体不仅为智能体提供与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)有重要应用,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素为“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习以及处理与人类社会的伦理和安全问题等。
2025-02-20
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能在机器人领域有重要应用,特别是在服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。此外,在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,并形成一个闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习,以及处理与人类社会的伦理和安全问题等。
2025-02-19
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能的应用广泛,在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域,能创造更具沉浸感和交互性的体验。 具身智能有三要素:本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。
2025-02-18
最新具身智能新闻
以下是关于具身智能的最新新闻: 具身智能是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,而具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。人形机器人是具身智能的代表产品。 具身智能的三要素包括本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下会有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。 具身智能体的行动分为“感知决策行动反馈”四个步骤,感知模块负责收集和处理信息,通过多种传感器感知和理解环境。常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器、麦克风等。 最近,具身智能的概念很火。例如稚晖君开源人形机器人全套图纸+代码引发圈内热议,各类具身智能产品如李飞飞的 Voxposer、谷歌的 RT1 和 RT2、RTX、字节跳动的 Robot Flamingo、斯坦福的 ACT 和卡耐基梅隆的 3D_diffuser_act 等,在不同任务和场景中展示了强大能力,并有潜力带来革命性变革。本文拆分为上下两篇,明天会更新下篇,聚焦人机交互、发展讨论。本文部分参考中国信息通信研究院和北京人形机器人创新有限公司的《具身智能发展报告》。
2025-01-27
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。其行动分为“感知决策行动反馈”四个步骤,并形成闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂多变环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-12-31
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构)或虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域(服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。通过具身智能,机器人能更好地理解和适应人类生活环境,提供更自然有效的人机交互,也能创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下有不同形态的硬件本体适应环境。 具身智能的行动可分为“感知决策行动反馈”四个步骤,形成一个闭环。 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合。与传统深度学习模型相比,LLMbased Agent 能主动感知和理解所在物理环境并互动,进行“具身行动”。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。未来研究将继续探索这些问题以推动其发展和应用。
2024-12-31
智能客服
以下是关于智能客服的相关内容: 在开源 AI 社区中,通过 Coze 开发了社群运营机器人作为智能客服。其具有以下功能和特点: 1. 知识库问答:将社区长期积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定的答案。解决了如“AGI 是什么”“什么是 ChatGPT”等基础问题,提高了效率,保证了答案的准确性和一致性。此外,还会基于问题给出相关延伸阅读链接,鼓励用户主动学习,影响用户学习方式。 2. 定时推送:能将活动信息和社区动态定时推送给用户,避免用户错过重要活动。 另外,GPT 智能客服部署方面: 1. GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。其开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。 2. GPTs 实现了目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。其实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库和问题一起做 embedding,扔给 LLM 作答。
2025-02-28
aI 智能体和大模型的区别是什么
AI 智能体和大模型的区别主要体现在以下几个方面: 1. 概念和定位:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。大模型是一种技术。 2. 服务对象:大模型是技术,面向用户提供服务的是基于大模型的产品,如智能体。 3. 功能特点:大模型具有强大的语言理解和生成能力,但存在局限性,如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。智能体通过集成特定的外部能力,能够弥补大模型的不足,例如实时信息获取、回答私有领域问题等。 4. 应用场景:智能体在 C 端有社交方向,用户注册后捏自己的 Agent 并让其与他人的 Agent 聊天;在 B 端可以帮助商家搭建 Agent。大模型适用于通用的语言处理任务。 5. 开发方式:有专门的智能体开发平台,如字节扣子、腾讯元器等。
2025-02-28
本地部署的AI模型如何制作智能体
以下是关于本地部署的 AI 模型制作智能体的相关信息: 阿里云百炼满血版 DeepSeek: 1. 开通满血版 R1 模型:在模型广场找到 DeepSeekR1 并进行授权。每个人会免费获得 100 万额度,过期未用则浪费。此模型由阿里云自主部署,并做了推理优化,性能强于多数本地部署版本。 2. 应用开发:新增模板,可从模板学习应用搭建。 3. 联网搜索:配置简单方便,结合 Deepseekr1 更强大,如搜索天气时会多方验证。 4. 新鲜的动态 few shot:可用于对模型某些表现不佳、易出幻觉的任务通过 prompt training 强行修正。 5. 工作流:用工作流让不同模型在同一任务创作。 行业变革中的智能体相关: Anthropic 的 Claude 3 拥有三个版本,最大规模的 Opus 适合复杂推理与自动化任务计划,其次的 Sonnet 适合个人助理及内容快速分析,如智能体任务,最快最便宜的 Haiku 可执行快速翻译、客服对话等任务。Meta、微软、Google、Apple 等均有可适配到移动终端上运行的开源模型。边缘算力竞争中,Apple、Google、高通等在终端占有量和芯片方面具有优势,PC 级别终端因智能集成复兴,未来可能有家用和办公用“智能体”终端诞生,Tesla EV 也在相关量级之上。 自制软件和赤脚开发者中的智能体相关: 大型语言模型可表现为智能体,能制定计划和决策以实现设定目标,可访问外部工具、数据库长期记忆等,并模仿逻辑思维模式。语言模型和智能体已部署到帮助专业开发人员的工具中,如 GitHub Copilot、Cursor 和 Replit,能读写代码、调试、创建文档和编写测试,使用此类工具可提高开发人员完成任务的速度。
2025-02-27
人工智能法律
以下是关于人工智能法律的相关内容: 《人工智能权利法案蓝图》提出了人工智能权利法案的相关内容。 《全球人工智能治理大变局之欧盟人工智能治理监管框架评述及启示》中提到: 1. 欧盟人工智能监管体系对中国的启示包括纳入道德伦理和人权考量的以风险为基准的统一人工智能治理。但伦理道德和人权的高度概括性、抽象性和不确定性给融入人工智能治理带来挑战,我国《科技伦理审查办法(试行)》是积极探索,但人工智能的特殊性可能无法体现,且“不可接受的风险”和“高风险”的界定存在不确定性和模糊性,以风险为基准的人工智能管理框架成效有待观望和研讨。 《人工智能法案》的相关规定包括: 1. 通过适当的设计、测试和分析,在开发前和整个开发过程中,用适当的方法(如让独立专家参与)证明对健康、安全、基本权利、环境、民主和法治的合理可预见风险的识别、减少和缓解,以及开发后剩余不可缓解风险的记录。 2. 处理和纳入仅受适当数据治理措施约束的数据集用于基础模型,特别是检查数据源的适用性和可能的偏差以及适当的缓解措施。 3. 设计和开发基础模型,以在其整个生命周期内通过适当的方法(如让独立专家参与模型评估、记录分析和广泛测试)实现适当水平的性能、可预测性、可解释性、可纠正性、安全性和网络安全性。 4. 设计和开发基础模型时,利用适用的标准来减少能源使用、资源使用和浪费,并提高能源效率和系统的整体效率,但不损害相关的现有联盟和国家法律。在第 40 条所述的标准公布之前,此义务不适用。基础模型应具备能够测量和记录能源和资源消耗以及在技术可行的情况下系统部署和使用在整个生命周期内可能产生的其他环境影响的能力。 5. 制定广泛的技术文档和易懂的使用说明,以使下游供应商能够遵守第 16 条和第 28(1)条规定的义务。 6. 建立质量管理体系,以确保并记录对本条的遵守情况,并有可能在满足这一要求方面进行试验。
2025-02-27
如何用扣子搭建自己的智能体
用扣子搭建自己的智能体可以参考以下步骤: 1. 创建智能体: 输入智能体的人设等信息。 为智能体起一个名称。 写一段智能体的简单介绍,介绍越详细越好,系统会根据介绍智能生成符合主题的图标。 2. 配置工作流: 放上创建的工作流。 对于工作流中的特定节点,如【所有视频片段拼接】,注意插件 api_token 的使用,避免直接发布导致消耗个人费用,可以将其作为工作流的输入,让用户自行购买后输入使用。 3. 测试与发布: 配置完成后进行测试。 确认无误后再发布。 扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot。开发完成后还可发布到各种社交平台和通讯软件上供用户交互聊天。同时,像菠萝作词家这样的智能体,是专为特定需求设计的,能够帮助解决相关领域的问题。
2025-02-27
一个智能脚本的智能体提示词应该怎么写
以下是关于智能体提示词的相关内容: 对于儿童寓意故事创作者智能体,比如“此地无银三百两”的故事,描述了张三藏银并留下纸条,被隔壁王二发现并偷走银子的情节。 又如“熟能生巧”的故事,讲述了山海关题字中店小二用独特方式写出绝妙“一”字的经过。 在创建 Coze 智能体时,工作流中的每个节点有不同的细节。“开始”节点有 4 个输入变量,分别为 idea_txt(主题观点)、left_to_txt(画面左上角的文字)、right_to_txt(画面右上角的文字)、img_prmpot(画面中间图片生成提示词),且变量名称要与智能体中提示词的变量对应一致。“大模型”节点使用 DeepSeek R1 模型,提示词要求不复杂,说出需求即可。“文本”节点是为了将文案分句,可按“句号”分句,具体根据文案格式选择不同方式。“图像生成”节点使用官方插件,模型选“LOGO 设计”,若生成全景图,此插件效果可能不佳,建议选其他插件。“抠图节点”用于对上一节点生成的图片进行抠图。 总之,写智能体提示词要根据具体的应用场景和需求来确定,明确输入变量和模型要求等。
2025-02-27