Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

具身智能

Answer

具身智能是人工智能领域的一个子领域,以下是关于具身智能的详细介绍:

  1. 定义:强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。
  2. 核心要素:
    • 智能体的“身体”或“形态”,包括物理形态(如机器人的机械结构)和虚拟形态(如模拟环境中的虚拟角色)。
    • 身体不仅是互动手段,也影响智能体的学习和发展。
  3. 涉及学科:包括机器人学、认知科学、神经科学和计算机视觉等。
    • 机器人学关注设计能自主行动和适应环境的机器人。
    • 认知科学和神经科学探索大脑处理与身体相关信息的机制及应用于人造智能系统。
    • 计算机视觉致力于开发算法,使智能体能够理解和解释视觉信息。
  4. 应用领域:
    • 机器人领域,如服务机器人、工业自动化和辅助技术等,能更好地理解和适应人类生活环境,提供更自然有效的人机交互。
    • 虚拟现实、增强现实和游戏设计等领域,创造更具沉浸感和交互性的体验。
  5. 特点:
    • 即“具身+智能”,是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。
    • 三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。
    • 四个模块为“感知-决策-行动-反馈”,形成一个闭环。
  6. 面临挑战:
    • 如何设计智能体的身体以最大化其智能表现。
    • 如何让智能体在复杂多变的环境中有效学习。
    • 如何处理智能体与人类社会的伦理和安全问题。

人形机器人是具身智能的代表产品,不同环境下会有不同形态的硬件本体适应环境。在追求人工通用智能(AGI)的征途中,具身 Agent 正成为核心的研究范式,它强调将智能系统与物理世界紧密结合,能够主动感知和理解所在的物理环境并互动,产生具身行动。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:具身智能是什么?

具身智能(Embodied Intelligence)是人工智能领域的一个子领域,它强调智能体(如机器人、虚拟代理等)需要通过与物理世界或虚拟环境的直接交互来发展和展现智能。这一概念认为,智能不仅仅是处理信息的能力,还包括能够感知环境、进行自主导航、操作物体、学习和适应环境的能力。具身智能的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。这些身体不仅为智能体提供了与环境互动的手段,也影响了智能体的学习和发展。例如,一个机器人通过其机械臂与物体的互动,学习抓取和操纵技能;一个虚拟代理通过在游戏环境中的探索,学习解决问题的策略。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,具身智能关注的是如何设计能够自主行动和适应环境的机器人;在认知科学和神经科学中,研究者探索大脑如何处理与身体相关的信息,以及这些机制如何应用于人造智能系统;在计算机视觉中,研究者致力于开发算法,使智能体能够理解和解释视觉信息,从而进行有效的空间导航和物体识别。具身智能的一个重要应用是在机器人领域,特别是在服务机器人、工业自动化和辅助技术等方面。通过具身智能,机器人可以更好地理解和适应人类的生活环境,提供更加自然和有效的人机交互。此外,具身智能也在虚拟现实、增强现实和游戏设计等领域有着广泛的应用,通过创造更具沉浸感和交互性的体验,丰富了人们的数字生活。尽管具身智能在理论和技术上取得了显著进展,但它仍面临许多挑战。例如,如何设计智能体的身体以最大化其智能表现,如何让智能体在复杂多变的环境中有效学习,以及如何处理智能体与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题,以推动具身智能的发展和应用。

一篇具身智能的最新全面综述!(上)

具身智能,即“具身+智能”,是将机器学习算法适配至物理实体,从而与物理世界交互的人工智能范式。以ChatGPT为代表的“软件智能体”(或称“离身智能体”)使用大模型通过网页端、手机APP与用户进行交互,能够接受语音、文字、图片、视频的多种模态的用户指令,从而实现感知环境、规划、记忆以及工具调用,执行复杂的任务。在这些基础之上,具身智能体则将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流,强调智能体与物理环境之间的交互。通俗一点讲,就是要给人工智能这个聪明的“头脑”装上一副“身体”。这个“身体”可以是一部手机,可以是一台自动驾驶汽车。而人形机器人则是集各类核心尖端技术于一体的载体,是具身智能的代表产品。具身智能的三要素:本体、智能、环境具身智能的三要素:“本体”,即硬件载体;“智能”,即大模型、语音、图像、控制、导航等算法;“环境”,即本体所交互的物理世界。本体、智能、环境的高度耦合才是高级智能的基础。不同环境下的会有不同形态的硬件本体以适应环境。比如室内平地更适用轮式机器人,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器以感知环境,做出决策以操控本体执行动作任务,从而影响环境。在智能算法与环境的交互中还可以通过“交互学习”和拟人化思维去学习和适应环境,从而实现智能的增长。具身智能的四个模块:感知-决策-行动-反馈一个具身智能体的行动可以分为“感知-决策-行动-反馈”四个步骤,分别由四个模块完成,并形成一个闭环。感知模块

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

Others are asking
请描述具身智能的技术原理
具身智能是人工智能领域的一个子领域,其原理包括以下几个方面: 1. 强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能体的“身体”或“形态”很重要,它可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 2. 涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体能够理解和解释视觉信息的算法。 3. 以“具身+智能”的范式,将机器学习算法适配至物理实体,与物理世界交互。例如将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。 4. 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 5. 行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 6. 在追求人工通用智能(AGI)的过程中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用。但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2024-12-25
具身智能
具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。身体不仅是与环境互动的手段,也影响智能体的学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域有重要应用,特别是服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素为本体(硬件载体)、智能(大模型、语音、图像、控制、导航等算法)、环境(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础,不同环境下有不同形态的硬件本体适应环境。 具身智能的行动分为“感知决策行动反馈”四个步骤,形成一个闭环。 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 尽管具身智能取得显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理与人类社会的伦理和安全问题等。
2024-12-24
具身智能
具身智能是人工智能领域的一个子领域。 它强调智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能不仅仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境等能力。 具身智能的核心在于智能体的“身体”或“形态”,其可以是物理形态(如机器人的机械结构),也可以是虚拟形态(如模拟环境中的虚拟角色)。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 具身智能的研究涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能理解和解释视觉信息的算法。 具身智能在机器人领域(如服务机器人、工业自动化和辅助技术等)、虚拟现实、增强现实和游戏设计等领域有广泛应用。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。不同环境下有不同形态的硬件本体适应环境。 具身智能的行动可分为“感知决策行动反馈”四个步骤,形成一个闭环。 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心研究范式,它强调智能系统与物理世界的紧密结合,能够主动感知和理解所在环境并互动。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如智能体身体的设计、在复杂环境中的有效学习、与人类社会的伦理和安全问题等。未来的研究将继续探索这些问题以推动其发展和应用。
2024-12-12
具身智能的前景
具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。身体不仅是与环境互动的手段,也影响智能体的学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体理解和解释视觉信息的算法。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用,能创造更具沉浸感和交互性的体验。 具身智能的范式是将机器学习算法适配至物理实体,与物理世界交互,如以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。 具身智能有人形机器人等代表产品,其有三要素:本体(硬件载体)、智能(大模型、算法等)、环境,且不同环境有不同形态的硬件本体适应。其行动分为感知、决策、行动、反馈四个模块形成闭环。 尽管具身智能取得显著进展,但仍面临诸多挑战,如智能体身体设计、复杂环境学习、伦理和安全问题等,未来研究将继续探索以推动其发展和应用。
2024-11-25
具身智能用什么开发
具身智能的开发涉及多个方面,其技术路线包括端到端模型和分层决策模型。感知模块负责收集和处理信息,通过多种传感器感知和理解环境,例如在机器人上常见的传感器有可见光相机、红外相机、深度相机、激光雷达、超声波传感器、压力传感器和麦克风等。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。目前,具身智能正成为人工智能的新浪潮,在机器人领域、虚拟现实、增强现实和游戏设计等方面有着广泛应用,但仍面临诸多挑战,如智能体身体设计、复杂环境中的有效学习以及与人类社会相关的伦理和安全问题等。
2024-11-08
想建一个具身智能方面的知识库,有哪些建议
以下是关于建立具身智能知识库的一些建议: 1. 数据清洗方面: 可以尝试手动清洗数据以提高准确性。对于在线知识库,创建飞书在线文档,每个问题和答案以“”分割,可进行编辑修改和删除,添加 Bot 后在调试区测试效果。 对于本地文档,注意合理拆分内容,不能将大量数据一股脑全部放入训练,例如对于章节内容,先放入大章节名称,再按固定方式细化处理,然后选择创建知识库自定义清洗数据。 2. 智能体的相关方面: 注重智能体的交互能力,包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用以及上下文说明。 考虑智能体的知识体量,利用豆包大模型本身的行业数据和语料库,创建结构化数据的知识库。 关注智能体的记忆能力,如变量、数据库和信息记录。 3. 具身智能的具体内容: 了解具身智能本体的形态实现思路,如 Mobility 和 Manipulation 的实现方式。 明确具身智能的定义,探讨其与大模型要解决问题的差异,以及“人形”的重要性。 解决数据来源和构建大脑的问题,包括大模型和多模态的数据泛化、数据采集和量的问题,以及特定任务和场景的处理,还有结构化与非结构化场景的处理等。 思考具身智能的落地场景和商业化方向,例如 ToB 或 ToC 的选择。 考虑具身智能创业团队的背景组成,如工业机器人、自动驾驶、服务机器人等领域的经验。
2024-11-05
智能体搭建
以下是关于智能体搭建的相关内容: 在品牌卖点提炼中,搭建智能体需要确定其结构。按照市场营销逻辑组织,包括品牌卖点定义与分类助手、品牌卖点提炼六步法、STP 市场分析助手、用户画像分析助手、触点收集助手等。同时还包括一些后续应用中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素。 智谱 BigModel 开放平台提供多 Agent、工作流、知识管理、批量效果调优等能力,用户可在画布上通过拖拉拽操作构建任务流,配合批量调试能力预览智能体效果,最终通过页面嵌入、api 调用等形式融入业务流程。 智谱 BigModel 共学营第二期关于把微信变成超级 AI 助理的课程中,创建助手工作流的步骤包括:注册智谱 Tokens 智谱 AI 开放平台(https://bigmodel.cn/),获取资源包(新注册用户注册即送 2000 万 Tokens,或通过充值/购买多种模型的低价福利资源包,或共学营报名赠送资源包),先去【财务台】左侧的【资源包管理】查看资源包,进入智能体中心我的智能体开始创建智能体。此流程会手把手编辑,完成一个简单智能体的搭建,实现特定功能。
2024-12-26
想学习英语最好用的智能体平台是哪个?
以下是一些适合学习英语的智能体平台: 1. 轻留:这是一款利用人工智能技术,基于自研大模型的协同智能体平台,将留学全流程 AI 化,提供查校、选校、文书撰写、申请跟踪、智能客服等功能,帮助学生高效完成留学申请流程。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造大模型时代的产品能力。 您可以根据自己的需求选择适合的平台。
2024-12-26
我需要专门进行金融投资项目研究,除了定性研究还很关注数据研究,我需要这样的智能体,哪一个智能体平台比较适合?
以下是一些可能适合您进行金融投资项目研究的智能体平台: 1. 蚂蚁的智能体。 2. Coze 的智能体。 3. 扣子平台:例如生物医药小助手就是基于扣子平台创建的,能为用户提供清晰的一步式回答。 4. Cursor 平台:可用于设计如卡密系统等商业化模式。 不过需要注意的是,不同的智能体平台可能具有不同的特点和适用场景,您需要根据自己的具体需求和使用习惯进行选择。
2024-12-26
目前智能化最好的智能体平台是有哪些?
以下是一些智能化较好的智能体平台: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者按需打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 您可以根据自身需求选择适合的平台进行进一步探索和应用。
2024-12-26
各个国家对生成式人工智能所持态度
以下是各个国家对生成式人工智能所持的态度: 欧洲:《欧盟人工智能法案》获得批准并正式生效,成为世界上第一个全面采用人工智能监管框架的地区。执行将分阶段进行,对“不可接受的风险”的禁令将于 2025 年 2 月生效。 美国:政府官员对生成式人工智能技术表现出兴趣,在评估其带来的机会的同时,也警示潜在风险。政府机构开始就相关问题征求公众意见,预计未来几个月内将有更多行动。例如,白宫宣布将采取更多措施加强美国的人工智能研究、开发和部署。此外,美国对中国实施了更严格的出口管制和投资限制。 中国:是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构正在介入。持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。禁止访问 Hugging Face 等国外网站,但官方批准的“主流价值观语料库”可作为训练数据源。 在移动端应用领域,尽管硅谷被视为 AI 核心地带,但世界各地都在积极构建相关产品。在生成式 AI 网页端和移动端产品的开发方面,不同地区的分布有所不同。例如,超过 30%的生成式 AI 网页端产品起源于美国湾区,而在移动应用开发者中,仅有 12%的团队设立于此。同样,超过一半的顶级生成式 AI 网页端产品在美国开发,而不到 1/3 的移动端应用源自美国本土。在全球范围内,包括亚洲(如中国、印度、韩国等)、大洋洲(如澳大利亚)、欧洲(如英国、法国、德国等)、中东(如以色列、土耳其等)的许多国家和地区都在参与生成式 AI 的发展。
2024-12-26
各个国家对人工智能的接受态度
不同国家对人工智能的接受态度存在差异: 美国:稳居对人工智能兴趣的榜首,在 12 个月里,其人工智能行业访问量达 55 亿次,占总流量的 22.62%。美国拥有超过 1.8 万亿美元的全球领先科技市场。 印度:紧随美国之后,访问量达 21 亿人次,占总流量的 8.52%。印度是全球最大的 IT 和 BPO 服务出口国之一。 印度尼西亚、菲律宾和巴西:兴趣水平相似,去年产生了 1.3 至 14 亿人次的访问量。巴西在南美洲处于领先地位,其产生的流量几乎是排在第二位的英国、日本和德国的两倍。 中国:尽管拥有 14 亿人口,但未跻身前 20 名。 从全球视角看教育与 AI 的融合程度: 北欧国家如芬兰,全社会重视教育和技术创新,政府重点投资教育技术研发和应用,实现个性化教学,培养学生批判性思维和解决复杂问题的能力。 许多发展中国家,尤其是撒哈拉以南的非洲国家,在教育资源基础配置上严重不足,基础设施薄弱,电力和网络连接不可靠,难以实现 AI 技术的高级应用。 在 AI 地缘政治方面: 最先进的 AGI 世界模型不开源,开源模型会落后闭源一个代际,但服务更广泛的专业应用。 美国对中国的硬件 科技限制进一步升级。 AGI 对全行业科技发展起推动作用,有更好 AGI 的国家会有更快的全面技术进步。 对于 AI 的立法、监管、伦理讨论大范围落后于技术发展,全世界主要国家都急于拥有自己的 AI,目前只有欧洲有相关讨论,但也仅在纸面上,我国相关法规讨论出发点在于“对于舆论的影响”,未触及 AGI 本身的伦理问题。
2024-12-26