Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

中美AI技术差距主要体现在哪些地方?以通信方面作为分析角度

Answer

中美在 AI 技术的通信方面存在以下差距:

  1. 技术专长:包括对 AI 技术如何用于提供产品和服务,以及技术标准的开发、使用和适用性等方面的理解。
  2. 跨监管制度的交互理解:在不同监管制度下 AI 使用案例如何相互作用方面的专业知识存在差异。
  3. 市场情报:对于 AI 技术如何颠覆现有商业模式,包括潜在机会和风险对监管目标的影响,了解程度不同。
  4. 组织能力:在有效适应 AI 应用的出现、在组织内吸收和分享知识、与提供保证技术的组织合作并制定技术标准,以及跨监管机构共享知识和合作监管等方面的能力有所不同。

需要注意的是,目前提供的内容中未明确提及中国在这些方面的具体情况,以上是基于所给资料中关于一般监管机构在 AI 相关方面能力差距的分析。

Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《促进创新的人工智能监管方法》.pdf

expertise.Ourresearch151has highlighted different levels of capability among regulators when itcomes to understanding AI and addressing its unique characteristics.Our engagement has alsoelicited a wide range of views on the capabilities regulators require to address AI risks and onthe best way for regulators to acquire these.103.We identified potential capability gaps among many,but not all,regulators,primarily in relationto:AI expertise.Particularly:oTechnical expertise in AItechnology.152For example,on how AI is being used to deliverproducts and services and on the development,use and applicability of technicalstandards.153oExpertise on how AI use cases interact across multiple regulatory regimes.oMarket intelligence on how AI technologies are being used to disrupt existing business models,both in terms of the potential opportunities and risks that can impact regulatory objectives.Organisational capacity.A regulator’s ability to:oEffectively adapt to the emergence of AI use cases and applications,and assimilate and sharethis knowledge throughout the organisation.oWork with organisations that provide assurance techniques(e.g.assurance service providers)and develop technical standards(i.e.standards development organisations),to identify relevanttools and embed them into the regulatory framework and best practice.oWork across regulators to share knowledge and cooperate in the regulation of AI use cases thatinteract across multiple regulatory regimes.Any attempt by a regulator to enforce a principle beyond its existing remit and powers may be legally challenged on thebasis of going beyond its legal authority.Including but not limited to Common Regulatory Capacity for AI,The Alan Turing Institute,2022.There is evidence that this is predominantly a recruitment problem.Regulators are trying to recruit but often cannot find theright candidates as they are competing for a limited supply of suitable candidates.Evidence showed that technical standards expertise varies across regulators.MHRA regularly uses and designatesstandards to clarify legal requirements,provide presumptive conformity and demonstrate the state of the art.Other regulators

拜登签署的AI行政命令_2023.10.30

[title]拜登签署的AI行政命令_2023.10.30As we advance this agenda at home,the Administration will work with allies and partners abroad on a strong international framework to govern the development and use of AI.The Administration has already consulted widely on AI governance frameworks over the past several months—engaging with Australia,Brazil,Canada,Chile,the European Union,France,Germany,India,Israel,Italy,Japan,Kenya,Mexico,the Netherlands,New Zealand,Nigeria,the Philippines,Singapore,South Korea,the UAE,and the UK.The actions taken today support and complement Japan’s leadership of the G-7 Hiroshima Process,the UK Summit on AI Safety,India’s leadership as Chair of the Global Partnership on AI,and ongoing discussions at the United Nations.The actions that President Biden directed today are vital steps forward in the U.S.’s approach on safe,secure,and trustworthy AI.More action will be required,and the Administration will continue to work with Congress to pursue bipartisan legislation to help America lead the way in responsible innovation.For more on the Biden-Harris Administration’s work to advance AI,and for opportunities to join the Federal AI workforce,visit[AI.gov](https://ai.gov/).

【法律法规】《促进创新的人工智能监管方法》.pdf

oReflected stakeholder feedback by expanding on concepts such as robustness and governance.We have also considered the results of public engagement research that highlighted anPlan for Digital Regulation,DSIT(formerly DCMS),2021.The Taskforce on Innovation,Growth and Regulatory Reform independent report,10 Downing Street,2021.The reportargues for UK regulation that is:proportionate,forward-looking,outcome-focussed,collaborative,experimental,andresponsive.Closing the gap:getting from principles to practices for innovation friendly regulation,Regulatory Horizons Council,2022.Pro-innovation Regulation of Technologies Review:Digital Technologies,HM Treasury,2023.Establishing a pro-innovation approach to regulating AI,Office for Artificial Intelligence,2022.A pro-innovation approach to AI regulationexpectation for principles such as transparency,fairness and accountability to be included withinan AI governanceframework.91oMerged the safety principle with security and robustness,given the significant overlap betweenthese concepts.oBetter reflected concepts of accountability and responsibility.oRefined each principle’s definition and rationale.Principle Safety,Security and RobustnessDefinitionandexplanationAI systems should function in a robust,secure and safe way throughout theAI life cycle,and risks should be continually identified,assessed andmanaged.Regulators may need to introduce measures for regulated entities to ensurethat AI systems are technically secure and function reliably as intendedthroughout their entire life cycle.Rationalefor theprincipleThe breadth of possible uses for AI and its capacity to autonomously developnew capabilities and functions mean that AI can have a significant impact onsafety and security.Safety-related risks are more apparent in certaindomains,such as health or critical infrastructure,but they can materialise inmany areas.Safety will be a core consideration for some regulators andmore marginal for others.However,it will be important for all regulators toassess the likelihood that AI could pose a risk to safety in their sector or

Others are asking
有哪些辅助输出3d模型资源的ai工具推荐一下
以下是一些辅助输出 3D 模型资源的 AI 工具推荐: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材。体验地址:https://cube.csm.ai 。 2. Move AI 推出的 Move API:能从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 。 3. ComfyUI 3D Pack:可快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 。 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I 。 5. Media2Face:3D 面部动画创造工具,根据声音生成同步的 3D 面部动画,允许个性化调整,如情感表达,应用于对话场景、情感歌唱等多种场合。网址:https://sites.google.com/view/media2face 、https://arxiv.org/abs/2401.15687 、https://x.com/xiaohuggg/status/1752871200303480928?s=20 。 6. SIGNeRF:在 3D 场景中快速生成和编辑对象,新增或替换场景中的物体,新生成场景与原场景无缝融合。网址:https://signerf.jdihlmann.com 、https://x.com/xiaohuggg/status/1744950363667759474?s=20 。 7. Luma AI 发布的 Genie 1.0 版本:文本到 3D 模型转换工具,生成详细逼真的 3D 模型,支持多种 3D 文件格式,获得 4300 万美元 B 轮融资。网址:https://lumalabs.ai/genie?view=create 、https://x.com/xiaohuggg/status/1744892707926122515?s=20 。 8. BakedAvatar 动态 3D 头像:从视频创建逼真 3D 头部模型,实时渲染和多视角查看,兼容多种设备,交互性编辑。网址:https://buaavrcg.github.io/BakedAvatar/ 、https://x.com/xiaohuggg/status/1744591059169272058?s=20 。 此外,在 CAD 领域,也存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 但使用这些工具通常需要一定的 CAD 知识和技能,对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2025-03-11
我是AI小白,应该如何浏览了解AI的最新资讯
对于 AI 小白来说,想要浏览了解 AI 的最新资讯,可以参考以下方法: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 3. 关注腾讯研究院开发的一系列专业的 AI 资讯产品,如: AI 每日速递,一份高度凝练的日报产品,帮助您用 3 5 分钟快速掌握 AI 领域当日十大关键进展。 AI 每周 50 关键词,作为周报产品,基于 AI 速递内容构建。通过梳理一周热点关键词并制作可交互索引,为研究者提供便捷的“检索增强”工具,助力快速定位所需信息。 科技九宫格,一档短视频栏目,以 3 5 分钟视频形式解读科技热点与关键技术原理。通过可视化呈现,促进您对前沿技术的理解与讨论。 4. 您还可以通过以下友情链接获取最新资讯:
2025-03-11
aigc 教程
以下为您提供一些 AIGC 教程相关的内容: 1. 2024 AIGC 营销视频生态创新大赛: 10 月 19 日:EM7,南柒() 10 月 23 日:从构思到可视化——AI 脚本与分镜创作(),嘉宾为娜乌斯嘉,是 AI 绘画知名 UP 主、全网粉丝 20w、国内首批 AIGC 应用研究先驱者、模型师、comfyUI 工程师、动画艺术和心理学双硕士。 11 月 01 日:AIGC 制作商业片进阶教程( 11 月 7 日:AIGC 电影化叙事实战教程,嘉宾为 Joey,是莫奈丽莎工作室主理人、上影全球 AI 电影马拉松大赛最佳叙事奖导演、可灵星芒 AIGC 短剧获奖导演、资深创意广告人。 总奖金池百万元,机会就在眼前,准备好您的创意来瓜分百万奖池。 2. AIGC 电影化叙事实战教程: 第三部分:AIGC 电影化的快速技巧 分镜头脚本制作 GPTs:以 2024 AIGC 营销视频生态创新大赛的冰工厂赛道为例。 生图及生视频提示词制作 GPTs 音乐提示词制作 GPTs:参考 prompt 为请帮我制作一首短剧结尾部分转折的纯音乐背景音乐,内容是孙悟空中了圈套,被带上闪电禁锢,落入陷阱,坠入悬崖失去踪迹,希望风格新颖,带有电影感,时长 30s。参考给到的 prompt:Experimental oriental electronica, Intense suspense, Background music, BPM65, Thunderous crashes, Rapid descending synths。调整歌曲快慢技巧:修改 BPM,值越高节奏越快。 3. 上海国际 AIGC 大赛第三名—《嘉定汇龙》复盘: 由咖菲猫咪和三思完成。三思是中国做 stable diffusion 艺术字的高手,具体教程可在 WaytoAGI 查看。核心是让 AI 根据提供的框架生成对应的艺术形态,根据地名特色产业,找寻或炼制 lora,有的用即梦的通用模型生成。 用一镜到底完成全片内容和思想的浓缩,通过空中俯拍嘉定的古老街景呈现历史厚重感,转向现代都市繁荣景象,以 AI 生成的未来场景结尾。 音乐选择为开头增色,从古风音乐到现代电子乐的转换与画面切换契合。 开场部分结合应用了 comfyui 转绘、steerablemotion、runway 文生视频、图生视频等多种 AI 技术,最后通过合成剪辑拼合。 多人在线工作流:十个人的小组,素未谋面却要完成高度协同工作。
2025-03-11
我想入ai赋能科研,该如何进行?有什么软件可以利用?
如果您想将 AI 赋能科研,可以从以下几个方面入手: 1. 探索科研新境界:借助 AI 助力创新,突破传统研究框架,赋予科研无限可能。 2. 揭开 AI 神秘面纱:掌握前沿技术,提升科研效率,让研究变得更智能、更高效。 3. AI 赋能科研:从理论到实践,深入了解人工智能的无限潜力,提升科研成果。 4. 创新与效率的碰撞:探索 AI 在科研中的应用,为您打开技术与智慧的新世界。 5. 未来科研的引擎:进行 AI 技术实操,助力您迈向前沿研究的新时代。 在软件方面,以下是一些可供利用的选择: 1. 对于个人用户,小模型(1.5B/7B/8B)在个人电脑上就能运行,能听懂人话,做简单问答,也适合做翻译、总结、改写,比如学校的自动答疑机、车载语音助手。 2. 中模型(14B/32B)需要专业服务器才能运行,相当于小学霸级 AI,能写代码、解数学题、写应用文,处理复杂说明书,比如帮程序员写代码、解答物理竞赛题。 3. 超大模型(70B/671B)需要科研实验室的超级电脑,能写精彩故事、论文报告,处理海量数据,做高端研究,比如分析全球气候数据、破解基因密码。 可用的途径包括: 1. https://bot.n.cn/ 2. 腾讯元宝(手机 APP) 3. http://metaso.cn(长思考) 4. API 接入法(详见相关图示)
2025-03-11
什么是langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 2. 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,适应不断变化的业务需求。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-03-11
对于教育AI可以做什么
教育 AI 可以在以下方面发挥作用: 1. 帮助获取信息和自学:可以要求人工智能解释概念,获得良好的学习效果。 2. 辅助教师教学:使教师的生活更轻松,让课程更有效。 3. 个性化教学:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等的问题。 4. 重构教育服务:授课教师、游戏玩家、情感伴侣等服务都可以由 AI 承担。 5. 提供历史文化教学:让历史人物亲自授课,不受时空限制,让学生更生动地了解历史和文化,拓宽视野,增强学习兴趣。 6. 作为数字陪伴:例如成为孩子的玩伴,给予社会奖励,促进儿童成长和提高学习成绩。 需要注意的是,由于人工智能可能产生幻觉,对于关键数据应根据其他来源仔细检查。同时,拜登签署的 AI 行政命令中也提到要塑造 AI 在教育方面的潜力,通过创建资源支持教育工作者部署支持 AI 的教育工具。
2025-03-11
ai入门可以从哪些地方着手
以下是 AI 入门的着手点: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自己的兴趣选择特定的模块(比如图像、音乐、视频等)进行深入学习。 4. 对于不会代码的情况: 学习 Python 的属性和方法,包括如何为类定义属性和方法,以及如何通过对象来调用它们。 了解继承和多态,包括类之间的继承关系以及如何实现多态。 理解异常处理,包括异常的概念、异常处理的方式(如使用 try 和 except 语句)。 掌握文件操作,包括文件读写、文件与路径操作。 了解 AI 背景知识基础理论,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 熟悉数学基础,包括统计学基础(如均值、中位数、方差等统计概念)、线性代数(如向量、矩阵等基本概念)、概率论(如条件概率、贝叶斯定理)。 熟悉算法和模型,包括监督学习(如线性回归、决策树、支持向量机)和无监督学习(如聚类、降维)。 5. 中学生学习 AI: 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术以及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
2024-08-20
通用人工智能技术取得显著突破,中美竞争加剧
以下是为您整理的相关内容: 2024 年 7 月 1 日: 微软 AI CEO Mustafa Suleyman 在阿斯彭思想节上表示,AI 的发展将持续对社会产生深远影响。他强调中美在技术竞争中应该寻求合作,而不仅仅是竞争。在谈到监管时,他认为监管并非邪恶,历史上技术都曾被成功监管。对于 AGI(通用人工智能),他认为应该认真对待与之相关的安全风险,并建立全球治理机制。 小伙伴整理了关于阿里 D20 的 PPT,内容主要是 AI 在设计、教育、出海方向上的内容。 举办了 AI 切磋大会,共 12 地小伙伴线下参与,一起 AI 出图、出视频、做音乐等,动手实践,享受创造的乐趣,目标是让每个人都能玩转 AI。 2024 年 11 月 6 日: 李开复在采访中表达了对 AGI(通用人工智能)霸权的担忧,指出如果美国形成 AGI 垄断,将对全球科技生态产生深远影响。他认为,中国在研发廉价模型和推理引擎方面具备优势,尽管技术上可能落后,但在应用和落地速度上可与美国竞争。他强调,追求 AGI 的同时,中国应寻找另一条生态护城河的发展路径,确保多样化应用和更广泛的市场参与。 作者艾木三号提到,Geoffrey Hinton 强调词嵌入是理解自然语言的关键,通过将文字符号转化为向量,模型能进行有效的信息编码和推理。类比能力使得模型能够发现不同事物间的共同结构,从而展现创造力。
2025-01-14
AI 辅助高中美术学生 进行创意图形的生成
以下是关于如何利用 AI 辅助高中美术学生进行创意图形生成的相关内容: 在不同的教学场景中,对 AI 的应用和态度有所不同。例如在艺术教学中,对于 AI 生成的图像可能有不同的需求。在历史课中,学生制作信息图表展示对宏观经济学原理的理解时,可能会接受 AI 生成的图像;而在美术课上,可能不太希望直接使用 AI 生成的图像。 在学习 AI 绘画方面,其在广告设计、游戏开发、影视制作、建筑设计等领域都有应用。比如在广告设计中可快速生成创意概念图,为策划提供灵感和初稿;在游戏开发中用于创建场景和角色形象,提高开发效率等。 对于小学课堂中的 AI 绘图课程设计,可先准备关键词并输入 Mid Journey 生成图片存下来展示,围绕 AI 绘图的好处展开,如创意增强,像“夜晚的未来城市风景,霓虹灯和飞行汽车”“超现实主义风景,漂浮的岛屿和瀑布云”等能创造独特且富有想象力的场景;效率提升,如“现代智能手机设计的快速草图”“新咖啡机概念的快速原型”能快速生成复杂多变的设计;降低技能门槛,像“简单卡通角色,微笑着,大眼睛”“基础的风景画,夕阳下的宁静湖泊”能帮助非专业者创作;探索新的艺术形式,如“数字抽象艺术,鲜明的色彩和几何形状”“算法生成的艺术作品,具有分形图案”能探索全新艺术形式的潜力。 综合以上,对于高中美术学生进行创意图形的生成,可借鉴上述思路和应用场景,注重培养学生的创意、效率和对新艺术形式的探索。
2024-09-25
中国大模型与世界差距
目前中国大模型与世界仍存在差距,但也有了显著进步。 在 2023 年度中文大模型基准测评中,国外的 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好的模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有 11.61 分的差距,与 GPT4(网页)有 4.9 分的差距。国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。 不过,过去 1 年国内大模型进步明显,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等都有较好表现。在专业与技能方面,GPT4 Turbo 领先幅度较大,但国内的文心一言 4.0 表现不俗。总体来看,国内第一梯队大模型与国外最好模型在专业与知识能力上仍有较大距离,但差距正在不断缩小。 另外,国内开源模型在中文上表现优于国外开源模型。从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。
2025-02-27
请简单评价你和deepseek的差距
DeepSeek 与其他相关模型存在多方面的差异和特点: 1. 训练成本方面:DeepSeek 的训练成本远高于传闻,总计约 13 亿美元,且定价低于实际成本,导致高额亏损。 2. 竞争优势方面:以低成本开发顶级 AI 模型的 Mistral AI 被 DeepSeek 迅速赶超,DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。 3. 发展模式方面:DeepSeek 有点像 2022 年之前的 OpenAI 和 DeepMind,具有非营利性学术研究机构的特点。它没有像很多中国 AI 公司那样注重产品运营、营销和推出各种开发者项目,目前似乎不打算做生意。 4. 技术突破方面:DeepSeek 发布的 V3 以低成本实现了高性能,成为其发展的里程碑。与 OpenAI 相比,DeepSeek 致力于用低成本资源实现高效,达到里程碑的时间更短,且训练与推理并重。
2025-02-08
中国AI工具与美国的差距
在 AI 工具方面,中国与美国存在一定差距。 从访问量最大的 AI 工具及流量行为来看,在分析的前 50 名人工智能工具的地理行为方面,中国排名第 47 位。美国稳居第一,在研究的 12 个月里,美国人工智能行业的访问量达到了 55 亿次,占总流量的 22.62%。尽管美国人口少于中国和印度,但美国拥有价值超过 1.8 万亿美元的全球领先科技市场。 不过,在 2024 年,国内涌现出类似可灵、即梦、智谱清影等一系列 AI 生成视频工具,其生成结果甚至远超国外。但需要注意的是,某些报告中对于中国的 AI 生成图、生成视频的工具未展开详细说明,不能仅据此就认为中国在该功能的 AI 工具上落后于国外。
2024-12-10
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03
中国与国外AI模型的差距
目前中国与国外的 AI 模型存在一定差距,但也有自身的优势和进步。 在一些方面,国外模型如 Llama 3.1 在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,首次缩小了开放模型与专有前沿的差距。谷歌 DeepMind 与纽约大学团队的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现出色。GPT 4 Turbo 在 SuperCLUE 测评中的总分遥遥领先,国外模型的平均成绩也相对较高。 然而,中国的 AI 模型也在不断发展。由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现突出。国内的最强模型能与美国生产的第二强前沿模型竞争,在某些子任务上挑战了 SOTA。国内模型更注重计算效率,以弥补 GPU 访问的限制,并学会更有效地利用资源。例如 DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。零一万物更加关注数据集的建设。 在专项基准如语言与知识方面,GPT4 Turbo 依然领先,但国内大模型也表现相对较好,有 14 个模型的得分高于 GPT3.5,有 9 个模型的得分高于 GeminiPro。在中文语言与知识能力上,国内大模型已基本追赶上国外头部大模型,未来有可能率先形成超越。 总体而言,国内外差距依然存在,但国内大模型在过去一年有了长足的进步,平均水平差距在缩小。
2024-11-01